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Business analytics and IT infrastructure preserve the integrity of the 
smart grid (SG) operation against the flood of big data that may be 
susceptible to faults, such as measurement differences. In [1], the impact 
of measurement differences that follow continuous uniform distributions 
(CUDs) of different magnitudes has been investigated via  
initial Statistical Hybrid Model (iSHM) footprints during the operation of 
overhead low-voltage broadband over power lines (OV LV BPL) 
networks. In this companion paper, the mitigation efficiency of piecewise 
monotonic data approximations, such as L1PMA and L2WPMA, is 
qualitatively assessed in terms of iSHM footprints when the 
aforementioned measurement difference CUD of different intensities are 
applied. 
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Nomenclature 

BPL Broadband over Power Lines 

BPMN Business Process Model and Notation 

CASD Channel Attenuation Statistical 

Distribution 

CUD Continuous Uniform Distribution 

DHM deterministic hybrid model 

FIIM  Fault and Instability Identification 

Methodology 

HS-DET method hook style energy theft detection method 

IP  Internet Protocol 

IT Information Technology 

iSHM initial Statistical Hybrid Model 

LOS Line-of-Sight 

LV Low Voltage 

L1PMA L1 Piecewise Monotonic Approximation 

L2WPMA L2 Weighted Piecewise Monotonic 

Approximation 

MLE Maximum Likelihood Estimator 

ND Normal Distribution 

OV Overhead 

PES Percent Error Sum  

SG Smart Grid 

SHM Statistical Hybrid Model 

TIM  Topology Identification Methodology 

WtG Wire-to-Ground 
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1. Introduction 
 

During the recent years, the transformation of the traditional power grid to the SG 

urges the installation of a parallel advanced IP-based communications network enhanced 

with a plethora of broadband applications and business analytics [1]-[14].  

Among the available communications solutions that can support this communications 

network, BPL networks can play an important role since they exploit the already installed 

wired power grid infrastructure [4], [15]-[23]. 

 However, big data that overwhelm SG are susceptible to errors that can affect 

business analytics and decisions based on them. Indeed, as the operation of  

BPL networks is concerned across SG, the already installed wired power grid 

infrastructure is a hostile medium for communications as it is designed to deliver power 

rather information [19], [21], [24]-[27]. As the BPL channel modeling is concerned, the 

recently proposed iSHM, which is based on the well-validated DHM, can be deployed for 

the broadband channel description of transmission and distribution power grids [19]-[23], 

[28]-[31]. Also, a plethora of related broadband iSHM tools, such as the definition 

procedure, the class maps and the iSHM footprints, have been so far demonstrated and 

tested in order to assist the operation of iSHM towards a more accurate statistical 

description of the communications channel [32]-[35]. Except for the communications 

channel itself, measurement differences between the experimental and theoretical results 

during the channel attenuation determination, briefly denoted as measurement 

differences, may occur due to a number of practical reasons and “real-life” difficulties 

that may critically influence iSHM operation, the interaction of broadband iSHM tools 

with iSHM and finally the SG big data with the related decisions. 

 Actually, the impact of measurement differences that can be treated as CUDs has 

been assessed through the iSHM footprints for a list of real indicative OV LV BPL 

topologies in [1] while appropriate countermeasures that are based on piecewise 

monotonic data approximations and iSHM footprints are first presented and assessed in 

this companion paper. The numerical results of [1] confirmed the nasty impact of 

measurement differences on the behavior of iSHM footprints of the OV LV BPL 

topologies since high measurement differences may jam the SG broadband tools, such as 

the topology identification technique and energy theft identification, which are based on 

the analysis of iSHM footprints. To restore the affected iSHM footprints and to preserve 

the quality of business analytics, piecewise monotonic data approximations, such as 

L1PMA [36] and L2WPMA [37], which have been successfully applied in distribution 

and transmission BPL networks for the mitigation of measurement differences in 

broadband applications of TIM [8], FIIM [8] and HS-DET method [38], can also be 

applied in iSHM footprints so that the contaminated measured data can be partially 

restored and the approximated iSHM footprints tend to be gathered close to the respective 

theoretical values. 

 The rest of this paper is organized as follows: Section II synopsizes the 

mathematics of measurement differences. Also, the piecewise monotonic data 

approximations of interest, say L1PMA and L2WPMA, are briefly outlined. L1PMA and 

L2WPMA mitigation character is analyzed in mathematical terms as well as their 

involvement in the iSHM operation and iSHM footprints. In Section III, the numerical 

results regarding the mitigation impact of piecewise monotonic data approximations 

against the measurement differences on the iSHM footprints are shown. Section IV 

concludes this paper.  
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2. Measurement Differences and Countermeasures in DHM and iSHM 
Footprints 
 

 In accordance with [1], measurement differences affect the iSHM performance 

since they are mathematically superimposed on the numerical results of DHM, which is 

the core element of the Phase A of the BPMN diagram of iSHM [29]. First, a synopsis of 

the mathematical involvement of the CUD measurement differences in DHM is provided. 

Second, a presentation of the two piecewise monotonic data approximations of interest, 

say L1PMA and L2WPMA, is presented as well as the required mathematics.  

 

2.1 Measurement Differences in DHM and iSHM Footprint Operation Settings 

 Due to practical reasons and “real-life” conditions [36], [39], [40], measurement 

differences may be observed among the theoretical and measured coupling scheme 

transfer functions for given OV LV BPL topology and coupling scheme. In accordance 

with [1], [36], [39], [40], these measurement differences can be decently treated either as 

CUDs of variable maximum value aCUD or as NDs of variable standard deviation 𝜎ND 

when the mean value 𝜇ND is assumed to be equal to zero. Since measurement differences 

𝑒𝑑1,𝑑2,𝑖
𝐷 {∙}  that follow the aforementioned distributions are added to the theoretical 

coupling scheme transfer function 𝐻OVLV,𝐶{∙} , the measured coupling scheme transfer 

function 𝐻𝑑1,𝑑2,𝑖
OVLV,𝐶,𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ {∙} can be determined by [1], [6], [41] 

𝐻𝑑1,𝑑2,𝑖
OVLV,𝐶,𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑓𝑞) = 𝐻OVLV,𝐶(𝑓𝑞) + 𝑒𝑑1,𝑑2,𝑖

𝐷 (𝑓𝑞), q=1,…,Q, 𝑖 = 1, … , 𝐼                (1) 

where  C  denotes the applied coupling scheme, [∙]𝐷  denotes the applied measurement 

difference distribution –either CUD of this paper or ND–, 𝑓𝑞 is the flat-fading subchannel 

start frequency, 𝑄 is the number of subchannels in the examined frequency range, d1 is 

the first parameter of the applied measurement difference distribution (i.e., the minimum 

value −𝑎CUD of CUD), d2 is the second parameter of the applied measurement difference 

distribution (i.e., the maximum value 𝑎CUD  of CUD),  𝐻OVLV,𝐶 (𝑓𝑞)  is the theoretical 

coupling scheme transfer function at frequency 𝑓𝑞 for given coupling scheme, 𝑒𝑑1,𝑑2,𝑖
𝐷 (𝑓𝑞) 

is the measurement difference at frequency 𝑓𝑞  for given measurement difference 

distribution, I is the number of different 1 × 𝑄 line vectors of measurement differences per 

applied measurement difference distribution, first and second parameter and i indicates 

the ith among I line vectors of measurement differences.  

 

2.2 Piecewise Monotonic Data Approximations and iSHM Footprints 

 Piecewise monotonic data approximations have extensively been applied in 

transmission and distribution BPL topologies during various critical broadband 

applications that require the mitigation of measurement differences in order to ensure the 

smooth operation of the power grid [36], [39], [42]-[46]. A synthesis of suitable 

quantitative performance metrics has been proposed and benchmarked so far, such as 

PES, fault PES and ΔPES, for the mitigation of measurement differences during the BPL 

channel attenuation determination [44], [14]. During the preparation of the improved 

iSHM footprints, piecewise monotonic data approximations are going to filter the 

numerical results of DHM that are contaminated by measurement differences between the 

Phases A and B of the BPMN diagram of iSHM [29]. From the available piecewise 

monotonic data approximations [37], [42], [47]-[51], L1PMA and L2WPMA are applied 
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in this paper while the corresponding iSHM footprints can be considered as new 

qualitative performance metrics.  

 As L1PMA is integrated in BPMN diagram of iSHM, L1PMA receives as input 

the measured OV LV BPL coupling scheme transfer function data from Phase A and 

gives as output the corresponding approximated data that are further delivered to Phase B 

of the BPMN diagram of iSHM. By exploiting the piecewise monotonicity property of 

OV LV BPL coupling scheme transfer functions, L1PMA decomposes the input data into 

separate monotonous sections between the adjacent turning points (primary extrema) 

[49], [50]. The main advantage of L1PMA is its mitigation performance against the 

uncorrelated measurement differences generated by CUDs by identifying and ignoring 

the few large measurement differences [36], [42], [44]. In programming terms, by having 

developed and exploiting the appropriate MATLAB - Octave / Fortran interface, L1PMA 

Fortran software package, which is freely available in [52], gives the best fit of the 

measured OV LV BPL coupling scheme transfer function data given the number of 

monotonic sections (i.e., either user- or computer-defined). 

As L2WPMA is regarded, L2WPMA holds the same position with L1PMA in the 

BPMN diagram of iSHM. Similarly to L1PMA, appropriate Fortran software package 

that interoperates with the existing MATLAB - Octave module is freely available online 

in [37]. L2WPMA operates in a same way to L1PMA since L2WPMA decomposes the 

examined input measured data contaminated by measurement differences into separate 

monotonous sections between its primary extrema [37], [42], [44]. Conversely to 

L1PMA, L2WPMA exploits the first divided of input data while it minimizes the 

weighted sum of the square of the measurement differences by requiring specific number 

of sign changes that are defined either by user or the computer.  

 Note that the default operation settings, which are described in Sec 3.4 of [24] and 

Sec. 3.2 of [1], that regulate the interconnected operation from DHM to iSHM footprints 

are also assumed in this paper. In order to allow the application of piecewise monotonic 

data approximations, the only mandatory change concerning the assumed default 

operation settings has to do with the required BPL frequency range; due to restrictions in 

the number of monotonic sections and sign changes imposed by the Fortran software 

packages of L1PMA and L2WPMA, respectively, the BPL frequency range and  

flat-fading subchannel frequency spacing are assumed to be equal to 3-30MHz and 

1MHz, respectively. Therefore, the number of flat-fading subchannels Q is equal to 27 

while the flat-fading subchannel start frequencies are given by 

𝑓𝑞 = 3MHz + (𝑞 − 1) × 1MHz, q=1,…,Q                                     (2) 

Note that small differences are expected to appear in iSHM class maps and iSHM 

footprints of OV LV BPL topologies of [1] due to the aforementioned changes of  

BPL frequency range settings but the generality of the mitigation measurement difference 

analysis remains valid. 

As the mathematics of piecewise monotonic data approximations is considered, 

the approximated coupling scheme transfer function can be expressed as  

𝐻𝑑1,𝑑2,𝑖
OVLV,𝐶,𝐷,𝑃̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿(𝑓𝑞) = 𝑃{𝐻𝑑1,𝑑2,𝑖

OVLV,𝐶,𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑓𝑞)}, q=1,…,Q, 𝑖 = 1, … , 𝐼          (3) 

where  P
  denotes the applied piecewise monotonic data approximation, say L1PMA and 

L2WPMA, and 𝑃{∙}  synopsizes the aforementioned procedure for given piecewise 

monotonic data approximation that is anyway executed by the corresponding software 

package. 
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3. Numerical Results and Discussion 
 

 In this Section, numerical results that qualitatively assesses the mitigation impact 

of piecewise monotonic data approximations against measurement differences on iSHM 

footprints of OV LV BPL topologies are demonstrated. First, the countermeasures effect 

of L1PMA and L2WPMA is qualitatively benchmarked for given intensity of the 

measurement difference CUD. Second, the impact of the user-defined numbers of 

L1PMA monotonic sections and L2WPMA sign changes is graphically assessed with 

respect to the mitigation of measurement differences. Third, the mitigation performance 

of L1PMA and L2WPMA is finally qualitatively assessed against the measurement 

differences of increasing intensity. 

 

3.1 iSHM Class Maps of OV LV BPL Topologies  
In accordance with the BPMN diagram of iSHM [29], the CASD MLEs of iSHM 

are computed at the Phase C of Fig. 2(a) of [24]. In accordance with [35], Weibull CASD 

MLEs are going to be used in this paper since Weibull CASD performs the best 

performance among the available iSHM CASDs with reference to the percentage change 

and average absolute percentage change when OV LV BPL topology main subclasses are 

examined. In accordance with [33]-[35], the iSHM class map of OV LV BPL topologies, 

which acts as the graphical basis for the demonstration of iSHM footprints due to 

measurement differences, is plotted in Fig. 1 with respect to 𝑎̂MLE
Weibull, 𝛽̂MLE

Weibull and the 

average capacity of each OV LV BPL topology subclass when the default operation 

settings of [1], [24] and the modified BPL frequency range settings of Sec.2.2 are 

assumed.  

By comparing Fig. 1 with Fig. 1 of [1], differences are observed in capacity 

borders and the location of the real indicative OV LV BPL topologies of Table 1 of [24] 

since different frequency range properties from those of [1] are assumed in this paper in 

order to allow the fine operation of L1PMA and L2WPMA [44]. Also, to focus on the 

demonstration of the mitigation impact results of piecewise monotonic data 

approximations, only one real indicative OV LV BPL topology of the main subclasses of 

Table 1 of [24], say, urban case A, is going to be examined in this paper. According to 

[1], aggravated OV LV BPL topologies, such as urban case A and B, that are 

characterized by intense multipath environments, are more sensitive to measurement 

differences as unveiled in iSHM footprints of [1] and for that reason urban case A is 

arbitrarily chosen to be investigated in this paper. Note that the real indicative OV LV 

BPL rural case is located outside the 𝛽̂MLE
Weibull  upper limit of Fig. 1 due to the 

aforementioned frequency range properties. 

 

3.2 iSHM Footprints due to Measurement Differences and the Countermeasures 
of Piecewise Monotonic Data Approximations 

 The impact of measurement differences on iSHM class maps of  

OV LV BPL topologies can be examined via the iSHM footprints as well as the effect of 

the proposed countermeasures. The mitigation impact of piecewise monotonic 

approximations can be checked by the comparison of the iSHM footprint due to 

measurement differences and the iSHM footprint after the application of the 

countermeasures in terms of the footprint size reduction, direction to the axes origin and 

mitigation shift.  
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Fig. 1.  iSHM class map of OV LV BPL topologies when 3-30MHz frequency band, 1MHz frequency 

subchannel spacing, WtG1 coupling scheme and FCC Part 15 are assumed [35].  

 

 

With reference to the iSHM class map of Fig. 1, the iSHM footprint due to 

measurement differences of the arbitrary 5dB maximum value 𝑎CUD  for the real 

indicative OV LV BPL urban case A is illustrated in Fig. 2 as superimposed white circles 

on the iSHM class map. Also, in Fig. 2, the iSHM footprint after the application of 

L1PMA against the aforementioned measurement differences is shown as superimposed 

cyan squares when 4 monotonic sections are assumed. Note that 100 line vectors of 

random measurement differences of the aforementioned CUD are assumed during the 

preparation of Fig. 2 that imply 100 white circles and 100 respective cyan squares.  

In Fig. 3, similar iSHM footprints with Fig. 2 are illustrated but for the application of 

L2WPMA when 4 sign changes and the same 100 line vectors of measurement 

differences are assumed.  

By comparing iSHM footprints due to measurement differences of Figs 2 and 3 

with Fig. 3(a) of [1], it is obvious that the fewer data of the numerical results of DHM of 

this paper render the iSHM footprint due to measurements more sensitive to the 

measurement differences and more segmented. The destructive result of measurement 

differences is justified by the extent of the iSHM footprint due to measurement 

differences that starts from the neighborhood of the theoretical values of 𝑎̂MLE
Weibull and 

𝛽̂MLE
Weibull of the real indicative OV LV BPL urban case A and reaches up to the OV LV 

BPL rural class topology.  

As the L1PMA is applied, its mitigation efficiency against the measurement 

differences is visible by the shift of the iSHM footprint towards the up right direction due 

to the L1PMA application near to the theoretical values of 𝑎̂MLE
Weibull and 𝛽̂MLE

Weibull of the 

real indicative OV LV BPL urban case A. Indeed, cyan squares that come from the 

L1PMA application are located closer to the theoretical values of 𝑎̂MLE
Weibull and 𝛽̂MLE

Weibull of 

the real indicative OV LV BPL urban case A compared with the white circles supported 
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by the measurement differences. In Fig. 3, same results regarding the iSHM footprint of 

the approximated data are observed after the L2WPMA application.  

 
Fig. 2.  iSHM footprints of the real indicative OV LV BPL urban case A when 3-30MHz frequency band, 

1MHz frequency subchannel spacing, WtG1 coupling scheme, FCC Part 15, CUD measurement differences 

of maximum value aCUD = 5dB (white circles) are assumed and L1PMA of 4 monotonic sections  

(cyan squares) is applied.  

 

 
Fig. 3.  Same plot with Fig. 2 but for L2WPMA of 4 sign changes (magenta triangles).  

 

 

 Until now, the mitigation impact of measurement differences on class maps has 

been investigated in terms of the relative location and the extent of the corresponding 

iSHM footprints due to the application of L1PMA and L2WPMA. In the following 
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subsection, the impact of monotonic sections and sign changes of L1PMA and 

L2WPMA, respectively, is assessed against the measurement differences for given 

measurement difference intensity. 

 

3.3 The Role of Monotonic Sections and Sign Changes against the Measurement 
Differences 

 In accordance with [42], [44], the selection of the numbers of monotonic sections 

for L1PMA and of the sign changes for L2WPMA has a critical effect during their 

application and their mitigation effect against the measurement differences. In order to 

highlight the importance of the right selection of the number of L1PMA monotonic 

sections and of L2WPMA sign changes, various strategies have been applied that exploit 

either the deterministic definition or the adaptive one until now [36], [39], [42]-[44]. 

 Similarly to Fig. 2, the iSHM footprint due to measurement differences of the 

arbitrary 6dB maximum value 𝑎CUD for the real indicative OV LV BPL urban case A is 

illustrated in Fig. 4(a). Also, in Fig. 4(a), the iSHM footprint due to the application of 

L1PMA against the aforementioned measurement differences is shown as superimposed 

cyan squares when 1 monotonic section is assumed. In Figs. 4(b)-(i), similar footprints 

with Fig. 4(a) are illustrated but for the number of monotonic sections ranging from 2 to 

9, respectively. In Figs. 5(a)-(i), similar footprints with Figs. 4(a)-(i) are illustrated but for 

the application of L2WPMA when sign changes range from 1 to 9, respectively, and the 

same 100 line vectors of measurement differences are assumed in Figs. 4(a)-(i) and  

5(a)-(i). 

From Figs. 4(a)-(i) and 5(a)-(i), it is obvious that the careful selection of  

L1PMA monotonic sections and L2WPMA sign changes may have different impact on 

the mitigation of measurement differences whereas a bad selection may even make the 

approximated data worse than the measured ones. Indeed, as the L1PMA monotonic 

sections are concerned, the predefined number of monotonic sections forces L1PMA to 

create a pattern of specific monotonic sections for the approximated coupling scheme 

transfer function data by appropriately filtering the examined measured coupling scheme 

transfer function data. On the basis of the predefined number of monotonic sections,  

the L1PMA concept is that measurement differences that mainly disrupt the pattern for 

the examined measured coupling scheme transfer function data are ignored thus 

delivering the approximated coupling scheme transfer function data for given number of 

monotonic sections. A relatively high number of monotonic sections, which is 

significantly greater than the number of monotonic sections of the theoretical coupling 

scheme channel attenuation data (e.g., greater than 8 monotonic sections in Fig. 4), can 

have the opposite results to the expected ones due to the overapproximation of the 

measured data; say, in this case, a significant number of contaminated data by 

measurement differences should be taken into account so that the number of monotonic 

sections of the approximated coupling scheme transfer function data agrees with the 

predefined number of monotonic sections. The overapproximation of the measured data, 

which comes from the application of relatively high numbers of monotonic sections, can 

be observed in iSHM footprints in the cases where cyan squares of the approximated 

coupling scheme transfer function data start to coincide with the white circles of the 

measured coupling scheme transfer function data. Conversely, when significantly lower 

number of monotonic sections is assumed (e.g., 1 or 2 monotonic sections in Fig. 4),  

an average value of the measured coupling scheme transfer function data is expected.  
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Fig. 4.  iSHM footprints of the real indicative OV LV BPL urban case A when 3-30MHz frequency band, 

1MHz frequency subchannel spacing, WtG1 coupling scheme, FCC Part 15, CUD measurement differences 

of maximum value aCUD = 6dB (white circles) are assumed and various L1PMA monotonic sections  

(cyan squares) is applied. (a) 1 monotonic section. (b) 2 monotonic sections. (c) 3 monotonic sections.  

(d) 4 monotonic sections. (e) 5 monotonic sections. (f) 6 monotonic sections. (g) 7 monotonic sections.  

(h) 8 monotonic sections. (i) 9 monotonic sections. 
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Fig. 5.  Same plots with Fig. 4 but for L2WPMA of different sign changes (magenta triangles). (a) 1 sign 

change. (b) 2 sign changes. (c) 3 sign changes. (d) 4 sign changes. (e) 5 sign changes. (f) 6 sign changes. 

(g) 7 sign changes. (h) 8 sign changes. (i) 9 sign changes. 

 

 

L1PMA approximations of very low monotonic sections are revealed in iSHM footprints 

by the significantly higher distances between the white circles and the respective cyan 

squares that can anyway lead to a safe mitigation of measurement differences.  

Same results concerning the selection of L2WPMA sign changes are observed in 

L2WPMA iSHM footprints. Anyway, a successful selection of L1PMA monotonic 

sections or L2WPMA sign changes is characterized by corresponding iSHM footprint 

whose cyan squares or magenta triangles are located closer to the sign of the real 

indicative OV LV BPL urban case A than the white circles of the measured coupling 

scheme transfer function data. In the rest of this paper, 1 monotonic section and  

5 sign changes are assumed for the application of L1PMA and L2WPMA, respectively, 

by visually comparing Figs. 4(a)-(i) and 5(a)-(i), respectively. 

In accordance with [36], [39], [42]-[44], the numbers of L1PMA monotonic 

sections and L2WPMA sign changes should be based mainly on the inherent properties 

of the examined theoretical coupling scheme transfer function data and secondarily on the 

intensity of measurement differences only for little adjustments. As the stochastic 

definition of the numbers of L1PMA monotonic sections and L2WPMA sign changes is 

applied in this paper, the aforementioned secondary dependence can be neglected. 

Therefore the 1 L1PMA monotonic section and 5 L2WPMA sign changes are assumed to 

act as constants for the following respective L1PMA and L2WPMA approximations.  

In the following subsection, the mitigation efficiency of L1PMA and L2WPMA against 

different intensities of measurement differences is qualitatively assessed through 

respective iSHM footprints.  
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3.4 L1PMA and L2WPMA iSHM Footprints and Different Intensities of 
Measurement Differences 

 Higher intensities of measurement differences entail higher maximum values 

𝑎CUD  for the CUD measurement differences that are applied in this subsection.  

With reference to the iSHM class map of Fig. 1, the iSHM footprint due to measurement 

differences of the real indicative OV LV BPL urban case A is illustrated as a set of 

circles of various reddish colors in Fig. 6 when the maximum value 𝑎CUD  of CUD 

measurement differences ranges from 0B to 15dB. In contrast with Figs. 4(a)-(i),  

only one random line vector of measurement differences, say, the first one, is applied per 

each maximum value 𝑎CUD while the color of the superimposed circles becomes redder as 

the maximum value 𝑎CUD  increases. Given the random line vector of measurement 

differences of maximum value 𝑎CUD and its corresponding circle of the iSHM footprint, 

L1PMA approximates the corresponding measured coupling scheme transfer function 

data with the assumed 1 monotonic section of Sec.3.3 while the respective approximated 

coupling scheme transfer function data are illustrated as a square of the same color with 

the circle color it comes from and a cyan perimeter as well as a connecting line of the 

same color with the circle color between the circle and the square.  

In Fig. 7, similar iSHM footprint with Fig. 6 is shown but for the case of L2WPMA when 

the 5 sign changes of Sec.3.3 are assumed and triangles with magenta perimeter are 

plotted instead of the L1PMA squares. 

 From Figs. 6 and 7, it is clear that the increasing maximum value 𝑎CUD  of  

CUD measurement differences imposes the simultaneous decrease of 𝑎̂MLE
Weibull  and 

𝛽̂MLE
Weibull  of the measured data of the real indicative OV LV BPL urban case A.  

In accordance with [1], the redder circles that come from the application of higher 

maximum values 𝑎CUD are located closer to the axes origin rather than to the 𝑎̂MLE
Weibull and 

𝛽̂MLE
Weibull  of the theoretical data of the real indicative OV LV BPL urban case A.  

Hence, the iSHM footprint due to the increasing measurement differences starts from the 

neighborhood of the theoretical values of 𝑎̂MLE
Weibull and 𝛽̂MLE

Weibull of the real indicative OV 

LV BPL urban case A and tends to the axes origin in a down-left diagonal direction.  

The goal of the application of piecewise monotonic data approximations is to reverse the 

previous diagonal direction of red circles and to bring the approximated respective red 

L1PMA squares and L2WPMA triangles: (i) back to the OV LV BPL urban case A 

topology class as primary objective; and (ii) as close as possible to the theoretical values 

of 𝑎̂MLE
Weibull and 𝛽̂MLE

Weibull as secondary but more accurate objective.  

In order to qualitatively assess the performance of L1PMA and L2WPMA against 

the increasing measurement differences, the location and the distance of L1PMA squares 

and L2WPMA triangles that come from the respective circles of the measured data are 

tracked. In the vast majority of the cases, squares and triangles are located closer to the 

theoretical values of 𝑎̂MLE
Weibull and 𝛽̂MLE

Weibull of the real indicative OV LV BPL urban case 

A compared against the respective circles of the measured data. More analytically, in the 

examined cases where high measurement differences are applied, the L1PMA mitigation 

of measurement differences is important since from the six circles that are located at OV 

LV BPL rural and “LOS” topology classes, no squares remain inside the aforementioned 

classes. Similarly, L2WPMA countermeasures against measurement differences achieve 

to mitigate five out of the five circles that are located at OV LV BPL rural and  
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Fig. 6.  iSHM footprints of the real indicative OV LV BPL topologies when 3-30MHz frequency band, 

WtG1 coupling scheme, FCC Part 15, 1 monotonic section of L1PMA and CUD measurement differences 

of maximum value aCUD that ranges from 0dB (black spot) to 15dB (red spot) are assumed.  

 

 
Fig. 7.  Same plots but for 5 sign changes of L2WPMA.  

 

 

“LOS” topology classes. In addition, from the 16 available circles, 6 of them are located 

at the OV LV BPL urban case A topology class when 8 squares and 9 triangles are 

present in the visible part of the previous class after the application of L1PMA and 

L2WPMA, respectively. Anyway, the connecting lines with their triangle signs at their 

middle reveal the performance of L1PMA and L2WPMA against the measurement 

differences while the mitigation efficiency becomes more significant when measurement 
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differences are higher. Anyway, the promising results regarding the mitigation of higher 

measurement differences by L1PMA and L2WPMA was expected after the determination 

of respective monotonic sections and sign changes in Sec.3.3. 

In this subsection, the qualitative assessment of piecewise monotonic data 

approximations via iSHM footprints has revealed their strong potential against 

measurement differences of increasing intensity. The obvious evolution of this piece of 

research is the proposal of a quantitative assessment of the mitigation impact of 

piecewise monotonic data approximations based on iSHM footprints in [53] so that a 

more confident selection of L1PMA monotonic sections and L2WPMA sign changes can 

be achieved. 

 

 

4. Conclusions 
 

 To ensure the reliability of data that feed the business analytics and the tools of 

the SG, the mitigation performance of L1PMA and L2WPMA against measurement 

differences has been qualitatively assessed via iSHM footprints for OV LV BPL 

topologies. Indeed, L1PMA and L2WPMA iSHM footprints present significant 

improvement concerning their extent and their distance from Weibull CASD MLEs of 

the real indicative OV LV BPL urban case A when they are compared against iSHM 

footprints due to measurement differences. Also, it has been verified that the fine 

selection of L1PMA monotonic sections and L2WPMA sign changes plays critical role 

towards a successful mitigation of measurement differences. In addition,  

the proposed countermeasures of applying L1PMA and L2WPMA have been proven to 

be a valuable tool against high measurement differences since the mitigation efficiency 

in these cases is important. Finally, the qualitative assessment of piecewise monotonic 

data approximations has been validated via iSHM footprints but the continuation of the 

research in [53] focuses on the proposal of quantitative metrics for iSHM footprints that 

allows the more precise selection of L1PMA monotonic sections and L2WPMA sign 

changes on the basis of the available iSHM footprints. 
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