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The energy requirements for converting one tonne (1,000 kg) of Chlorella 
slurry of 20 wt% solids via fast pyrolysis, microwave-assisted pyrolysis 
(MAP), and hydrothermal liquefaction (HTL) were compared. Drying 
microalgae prior to pyrolysis by using a spray drying process with a 50% 
energy efficiency required an energy input of 4,107 MJ, which is higher 
than the energy content (4,000 MJ) of raw microalgae. The energy inputs 
to conduct fast pyrolysis, MAP, and HTL reactions were 504 MJ (50% 
efficient), 1,057 MJ (~25% efficient), and 2,776 MJ (50% efficient), 
respectively. The overall energy requirement of fast pyrolysis is 
theoretically about 1.6 times more than that of HTL. The energy recovery 
ratios for fast pyrolysis, MAP, and HTL of microalgae were 78.7%, 57.2%, 
and 89.8%, respectively. From the energy balance point of view, 
hydrothermal liquefaction is superior, and it achieved a higher energy 
recovery with a less energy cost. To improve the pyrolysis process, 
developing drying devices powered by renewable energies, optimizing the 
pyrolysis process (specifically microwave-assisted), and improving the 
energy efficiency of equipment are options.   
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Introduction  
  

 Thermochemical conversion of microalgae can be divided into pyrolysis of dry 

algae and hydrothermal liquefaction (HTL) of algal slurries [1]. Usually, the microalgal 

culture has a very dilute concentration of 0.1-1% dry solids. Currently, the proposed 

harvesting process is using a series of mechanical unit operations to dewater the microalgae 

media to a level of ~20% dry solids, which is considered as a less energy intensive 

processing option than completely drying microalgae for pyrolysis purpose. Drying is one 

of most dominant costs for algae harvest and may account for 30% of the total product 

costs, and the power consumption was equivalent to 15.8% of the energy of the recovered 

hydrocarbon [2]. Because of this energy consumption barrier, pyrolysis is considered as a 

kind of hopeless technologies for microalgae and only limited to laboratory investigations 

[3]. Meanwhile, researchers also recognized the advantages of the pyrolysis of microalgae 

(such as higher quality of pyrolytic bio-oil than that of cellulosic biomass) [4] and the 

merits of pyrolysis technology (such as lower capital cost than HTL) [5, 6]. 

 This paper provides a simple comparison between the energy consumptions in 

pyrolysis of microalgae and hydrothermal liquefaction of microalgae. The purpose is not 

to provide a complete evaluation to these conversion technologies, but to give an idea how 

the energy consumption impacted the conversion processes of microalgae, and what would 

be the possible solutions.  

 

 

Methodology 
 

Microalgae 
 The composition analysis and properties of Chlorella sp. are summarized in Table 

1. An engineered Chlorella sp. was assumed to be grown autotrophically, and had 

following components: 25% fatty acids, 50% protein, 15% polysaccharide, and 10% ash. 

For calculation, one tonne (1,000 kg) of Chlorella slurry at 20°C with 20 wt% solids and 

80 wt% water (i.e. 200 kg dry algal cells and 800 kg water) was selected as the baseline. 

Cell concentration of 20 wt% has been used in multiple technical reports published by US 

national laboratories [7, 8]. This kind of algal slurries can be obtained via a series of 

dewatering unit operations such as settling, dissolved air flotation, and centrifugation. The 

energy content of microalgae is ~20 MJ/kg, so this microalgal slurry carried 4,000 MJ. 

 

Table 1. Composition analysis and properties of C. vulgaris [9-12] 
Protein (wt%) 34-58.1 Specific heat (kJ/kg·K)* 1.57 

Polysaccharide (wt%) 9.42-15.5 
Molecular weight 

(g/mol)* 
360 

Lipid (wt%) 1.04-15.6 HHV (MJ/kg) 19.3-21.2 

C (wt%) 44.5-50.2 Volatile matter (wt%) 51.8-75.2 

H (wt%) 6.2-7.2 Fixed carbon (wt%) 9-32.1 

N (wt%) 6.4-10.9 Ash (wt%) 9.6-11.4 

O (wt%) 24.6-40.7   

* [13] 
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Fast pyrolysis and microwave-assisted pyrolysis processes 
 Prior to pyrolysis, the microalgal slurry (1,000 kg) was dried with a spray dryer to 

220 kg with a 9.1% moisture. Spray drying could generate Chlorella powders consisted of 

globular particles with a diameter of approximately 50-80 m (i.e. 0.05-0.08 mm, 

approximately 270- 200 mesh) [14], which is fine enough for fast pyrolysis. Fast pyrolysis 

of microalgal powders were conducted in a fluidized bed reactor at 500°C with a heating 

rate of 600 °C/s. Pyrolytic product yields were assumed to be following: the bio-oil yield 

was 50 wt%, the yield of water solubles was 15 wt%, gaseous products counted for 4 wt%, 

and the biochar yield was 28 wt%. The gaseous products consisted of 22.2 vol% H2, 34.9 

vol% CH4, 38.6 vol% CO2, and 4.3 vol% C2H6 [11].  

For microwave-assisted pyrolysis, microalgae could be air-dried by using solar 

dryers (Figure 1), because microwave pyrolysis doesn’t require the finely ground feed [15, 

16]. Microwave-assisted pyrolysis was assumed to be conducted in a pilot scale system, 

which could process large chunks of dry microalgae [17]. Pyrolytic product yields were 

assumed to be following: the bio-oil yield is 26 wt%, the yield of water solubles was 24 

wt%, gaseous products counted for 22 wt%, and the biochar yield is 28 wt% [10].  

 

 

A B 

  
Figure 1. Naturally dried microalgae (A) and ground microalgae (B) 
 

 

Hydrothermal liquefaction (HTL) 
 The microalgal slurry of 20 wt% solids was pumped to the HTL reactor, and 

hydrothermally treated in subcritical water at 2,500-3,000 psia and 350°C. The HTL 

process yielded 4 wt% gases, 51 wt% bio-crude oil, and 43 wt% aqueous organics and ash 

[5]. The non-condensable gases had following composition: 42 vol% CO2, 50 vol% NH3, 

7 vol% CH4, and 1 vol% ethane [18]. The non-condensable gases were mixed with natural 

gas and sent to a steam boiler for power generation. The predominately organic liquid phase 

is sent to catalytic upgrading, and the predominately aqueous phase is sent to wastewater 

cleanup for carbon recovery. Solids that can be removed by filtration might be recycled 

back to the algae ponds as nutrients [14]. The conditions and product yields for pyrolysis 

and HTL processes used in this study are summarized in Table 2.  
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Table 2. Conditions and product yields of pyrolysis and hydrothermal liquefaction 
of microalgae  

 Fast Pyrolysis (500°C) Microwave-assisted 

Pyrolysis  

HTL (350°C) 

Reaction temperature 500°C - 350°C 

Pressure  Atmospheric pressure Atmospheric pressure 2500-3000 psia 

Bio-oil (wt%) 50 26 51 

Water (wt%) 15 24 - 

Biochar yield (wt%) 28 28 - 

Gaseous products (wt%) 4 22 4 

 

Calculation 
Specific heat of microalgae 

 According to a scientific report that studied the thermo-chemical properties of six 

species of microalgae, the specific heat (cp) of microalgae was determined as 1.2 - 2 

kJ/kg·K [13]. Meanwhile, to calculate the specific heat of microalga from its composition, 

following assumptions were applied: ash is SiO2 with a specific heat of 733 J/kg·K or 0.175 

cal/g·°C, the specific heat of polysaccharides is same as that of glucose (0.3 cal/g·°C), the 

specific heat of fatty acids is same as that of stearic acid (0.55 cal/g·°C), and the specific 

heat of protein is same as that of quinolone (0.352 cal/g·°C). Thus, the specific heat of 

Chlorella sp. was determined via Eqn. 1 as 0.376 cal/g·°C or 1.57 kJ/kg·K.  

Specific heat of microalga (cp, microalgae) 

=10%×0.175+25%×0.55+50%×0.352+15%×0.3=0.376 cal/g∙°C  Eqn. 1 

 

Energy for thermal drying of microalgal slurry 

 The feedstock for pyrolysis is typically quoted at <10 wt% moisture and requires 

thermal drying. To thermally dry one tonne of microalgal slurry (20°C) to 9.1% moisture, 

780 kg water needs to be evaporated at 100°C. Water has a specific heat of 4.187 kJ/kg·K 

and latent heat (at 100°C) of 2256.9 kJ/kg [19]. 

Energy required for water evaporation: 

=780×4.187x(100-20)+780×2256.9=2,022MJ     Eqn. 2 

To evaporate 780 kg water from 1 tonne algal slurry, it will require at least 

2,021,650 kJ, which is approximately 2,022 MJ or 562 kWh. This energy consumption is 

about 18.6 days of electricity usage of an American household [20]. Because the whole 

slurry shall be heated by the thermal dryer, the energy input for heating up rest water and 

microalgae can be calculated via following equations: 

Energy required for heating 20 kg water to 100°C: 

=20×4.187x(100-20)=6,699.2kJ=1.86kWh     Eqn. 3 

Energy required for heating 200 kg microalgae to 100°C: 

=200×1.57x(100-20)=25,120kJ=6.98kWh     Eqn. 4 

The total energy for thermal drying of 1,000 kg microalgal slurry shall be equal to 

the sum of equations 2 through 4.   

The total energy for thermal drying of 1,000 kg microalgal slurry: 

=2,021,650.8kJ+6,699.2kJ+25,120kJ=2,053MJ=570kWh   Eqn. 5 

However, the overall thermal efficiency of spray dryers is only 20-50% [21]. Hence, 

if a dryer with 50% efficiency was used for drying the microalgal slurry, the total energy 

input for the drying process is 4,107 MJ or 1140 kWh. If the thermal efficiency can be 

improved to 75% [22], the energy requirement reduced to 2,737,960 kJ (2738 MJ) or 760 

kWh.  
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Energy required for fast pyrolysis of microalgae 

It’s reported that the energy required to achieve thermal conversion (i.e. pyrolysis) 

of six different microalgae at 500°C was found to be approximately 1 MJ/kg [13]. Because 

only dry microalgal samples were used in their study, the energy required to evaporate 

moisture must be considered too.   

Energy required for evaporation of 20 kg water: 

=20×4.187×(100-20)+20×2256.9=51,837kJ=23.6kWh   Eqn. 6 

Energy required for pyrolyzing 200 kg microalgae: 

=200×1MJ/kg=200MJ=200,000kJ=55.6kWh     Eqn. 7 

Total energy required for pyrolysis of 220 kg microalgae 

=51,837kJ+200,000kJ=251,837kJ=252MJ=70kWh    Eqn. 8 

If a pyrolyzer with 50% energy efficiency was used, the total energy input for the 

pyrolysis of microalgae rose to: 

=251,837 kJ÷50%=503,674kJ=504MJ=140kWh    Eqn. 9 

 

Energy output from fast pyrolysis products 

Pyrolyzing 200 kg dry microalgae yielded 100 kg bio-oil, 30 kg water, 8 kg gases, 

and 56 kg biochar. The microalgal bio-oil was assumed to have a higher heating value of 

30 MJ/kg, so the energy output from the bio-oil is 3,000 MJ (3,000,000 kJ = 833 kWh). 

According to the composition of the gaseous products (22.2 vol% H2, 34.9 vol% CH4, 38.6 

vol% CO2, and 4.3 vol% C2H6), the gas phase had an average molecular weight: 

MW = 2 × 0.222 + 16 × 0.349 + 44 × 0.386 + 30 × 0.043 = 24 g/mol            

Eqn. 10 

So, total gaseous products were 333.3 mol and 7,466.7 L (7.5 m3) at normal 

temperature & pressure conditions, including 1.665 m3 H2, 2.61 m3 CH4, 2.89 m3 CO2, and 

0.32 m3 C2H6. The higher heating values of H2, CH4, and C2H6 are 12.769 MJ/m3, 39.781 

MJ/m3, and 69.693 MJ/m3 [23]. The energy output from the gases: 

= 12.769 × 1.665 + 39.781 × 2.61 + 69.693 × 0.32 = 147.4MJ = 41kWh          Eqn. 

11 

Because microalgal biochar is normally used as the soil amendment, total energy 

output from pyrolysis of 200 kg microalgae is 3,147.4 MJ (3,147,400 kJ or 874 kWh). 

 

Energy required for microwave-assisted pyrolysis of microalgae 

Energy requirement for microwave-assisted pyrolysis was only experimentally 

determined for a benchtop system that converted 30-60 g dry microalgae. Based on their 

results, it required 317 kJ to pyrolyze 60 g microalgae to the bio-oil with a 404 kJ energy 

content and gases with a 283 kJ energy content [24]. The experiments in  [24] were  

performed in a microwave oven, which normally is less than 60% efficient [25]. If scaling 

up this microwave oven linearly to a system processing 200 kg microalgae with the same 

efficiency, the microwave-assisted pyrolysis requires an energy input of 1,056,667 kJ 

(1,057 MJ or 293.5 kWh), producing the bio-oil of 52 kg with a 1346,666 kJ (1347 MJ or 

374 kWh) energy content and gases of 44 kg with a 943,333 kJ (943 MJ or 262 kWh) 

energy content.  

 

Energy required for HTL of microalgae 

One tonne (1,000 kg) of microalgal slurry was processed via HTL at 350°C. 

According to the steam table, the specific enthalpies of water (saturated liquid) at 20°C and 
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350°C (~17 MPa/2,500 psia) are 83.9 kJ/kg and 1,690 kJ/kg, respectively [26]. Energy 

required for heating 800 kg water from 20°C to 350°C: 

= 800 × (1690 − 83.9) = 1,284,880kJ = 1,285MJ = 357kWh             Eqn. 12 

Energy required for heating 200 kg microalgae from 20°C to 350°C: 

= 200 × 1.57 × (350 − 20) = 103,620kJ = 104MJ = 29kWh             Eqn. 13 

The total energy required for heating this 1,000 kg microalgal slurry to 350°C is 

1,389 MJ or 386 kWh. If an electric heater with a 50% efficiency was used for this duty, 

the total energy required for HTL of microalgae is 2,778 MJ (772 kWh). If a 75% thermal 

efficiency can be applied, the total energy required for HTL is 1,851 MJ or 514 kWh.  

 

Energy output from HTL products 

Since the yield of bio-crude oil was 51%, and thus the process yielded 102 kg bio-

crude with a 35 MJ/kg heating value [27]. Total energy recovered in the bio-crude oil was 

3,570 MJ.  

The gaseous products (42 vol% CO2, 50 vol% NH3, 7 vol% CH4, and 1 vol% ethane) 

had an average molecular weight: 

MW = 44 × 0.42 + 17 × 0.5 + 16 × 0.07 + 30 × 0.01 = 28.1g/mol                       

Eqn. 14 

So, total gaseous products were 285 mol and 6,377 L (6.4 m3) at normal temperature 

& pressure conditions, including 2.7 m3 CO2, 3.2 m3 NH3, 0.45 m3 CH4, and 0.06 m3 C2H6. 

The higher heating values of CH4, and C2H6 are 39.781 MJ/m3 and 69.693 MJ/m3. The 

energy output from the combustible gases: 

= 39.781 × 0.45 + 69.693 × 0.06 = 22MJ = 6kWh                       Eqn. 15 

 
 
Results and Discussion 
 

 To compare the energy consumption of different conversion technologies for 

microalgae, a 1,000 kg microalgal slurry was used as the baseline, and assumed to be 

processed with fast pyrolysis, microwave-assisted pyrolysis, and hydrothermal 

liquefaction processes. The energy requirements for the drying process and conversion 

reactors are summarized in Table 3. The energy present in original microalgae, the bio-oil 

or bio-crude, and gases is also summarized in Table 3.  

 

Table 3. Breakdown of energy consumption during pyrolysis and liquefaction  of 
microalgae (1,000 kg slurry with 20% solids at 20°C) 

Energy (MJ) Fast Pyrolysis 

(500°C) 

Microwave-assisted 

Pyrolysis  

HTL (350°C) 

Energy in microalgae (20 

MJ/kg) 

4,000 4,000 4,000 

Drying  4,107a 4,107 a N/A 

Supporting conversion 

reaction  

504 a 1,057 b 2,778 a 

Total energy input 4611 5,164 2,778 

Bio-oil 3000 1347 3570 

Gas 147 943 22 

Total energy in products 3147 2290 3592 

Energy recovery 78.7% 57.2% 89.8% 

a: 50% efficiency 

b: 25% efficiency 
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The original 1,000 kg microalgal slurry with 200 kg dry microalgal cells carried 

4,000 MJ energy. If drying this slurry to a moisture content of 9.1% by using a spray dryer 

with a 75% efficiency, the energy requirement for the dryer was 2,738 MJ. One advantage 

of spray drying for microalgae is to directly generate find powders for the need of pyrolysis. 

However, the spray dryers generally have 20-50% efficiency, resulting in increased energy 

inputs of 4,107-10,267 MJ. Obviously, the efficiency of the drying system plays a very 

important role. If a drying system powered by renewable energies could be introduced into 

this process, the pyrolysis of microalgae will be more attractive.  

The energy requirements for microalgae conversion were various for different 

techniques. Fast pyrolysis required the lowest amount of heat, because the process was 

considered to be conducted under the optimal conditions. Microwave-assisted pyrolysis 

was scaled up from a bench-top system with a low energy efficiency, and showed an energy 

requirement of ~1,000 MJ for converting 200 kg dry microalgae. Because pyrolyzing 200 

kg microalgae requires an energy input of 252 MJ, the actual efficiency of this microwave 

pyrolysis system was approximately 25%. Meanwhile, hydrothermally liquefying 1,000 kg 

microalgal slurry needed ~2,778 MJ (50% efficient). The energy need for HTL was less 

than that of drying wet microalgae, because the evaporation process was avoided and HTL 

reactions happened in saturated water.  

 The product yields of fast pyrolysis and HTL were optimal numbers, which were 

projected from recent experimental studies and shall be realized in the near future. Both 

optimized pyrolysis and HTL processes should produce ~50 wt% bio-oil or bio-crude oil 

with a higher heating value of 30-30 MJ/kg, which is the main energy carrier for both 

processes. The combustible gas yields from both processes were relatively low and less 

than 4 wt%. The energy recovery ratios from microalgae were 78.7% and 89.8% for fast 

pyrolysis and HTL, respectively. Because microalgae have a high ash content, resulting in 

a significant amount of ash and metals in the microalgal biochars. Normally, the microalgal 

biochars are considered as a good soil amendment.  

 The microwave-assisted pyrolysis process used for this study was not optimized, 

and produced large quantities of gases and less bio-oil products than fast pyrolysis or HTL. 

The energy recovery ratio for microwave-assisted pyrolysis was only 57.2%. Microalgae 

are a poor microwave absorber too, so other materials like char and activated carbon are 

often added to help microwave absorption [28]. 

From the energy balance point of view, hydrothermal liquefaction is superior, and 

it could achieve the higher energy-recovery ratio with a lower energy cost.  

Meanwhile, the pyrolysis of microalgae might still have its chance. The major 

advantage of microwave-assisted pyrolysis is that it can process feedstock with a large 

particles size even chunks, because of the unique heating approach. If the efficiency of 

microwave-assisted pyrolysis can be improved to that of fast pyrolysis, and solar drying 

can be applied to solve the negative energy issue (as shown in Figure 2), the pyrolysis of 

microalgae will be more promising.   
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Figure 2. Proposed ideal pyrolysis process for microalgae  

 

CONCLUSIONS 
 

The energy requirements for converting one tonne (1,000 kg) of Chlorella slurry of 

20 wt% solids via fast pyrolysis, microwave-assisted pyrolysis (MAP), and hydrothermal 

liquefaction (HTL) were compared. Drying microalgae prior to pyrolysis by using a spray 

drying process with 20%, 50%, and 75% energy efficiency required energy inputs of 

10,267 MJ, 4,107 MJ, and 2,738 MJ, respectively. The energy inputs to conduct fast 

pyrolysis, MAP, and HTL reactions were 504 MJ (50% efficient), 1,057 MJ (~25% 

efficient), and 2,776 MJ (50% efficient), respectively. The microalgal feed contained 4,000 

MJ, and the energy recovery ratios for fast pyrolysis, MAP, and HTL of microalgae were 

78.7%, 57.2%, and 89.8%, respectively. From the energy balance point of view, 

hydrothermal liquefaction is superior, and it achieved a higher energy recovery with a less 

energy cost. To improve the pyrolysis process, developing drying devices powered by 

renewable energies, optimizing the pyrolysis process, and improving the energy efficiency 

of equipment are options.   
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