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The knowledge of diffuse solar radiation (Hd) is of almost importance for 
determining the gross primary productivity, net ecosystem, exchange of 
carbon dioxide, light use efficiency and changing colour of the sky. 
However, routine measurement of Hd is not available in most locations in 
North-Western Africa. During the past 36 years in order to predict Hd in the 
horizontal surface on hourly, daily and monthly mean basis, several 
regression models have been developed for numerous locations in North-
Western Africa. As a result, several input parameters have been utilized 
and different functional forms applied. The regression models so far 
utilized were classified into six main categories and presented based on 
the input parameters applied. The models were further reclassified into 
numerous main groups and finally represented according to their 
developing year. In general, 188 regression models, 33 functional forms 
and 20 groups were reported in literature for predicting Hd in North-
Western Africa. The regression and soft computing models developed 
within North-Western Africa and across the globe were examined in order 
to determine the best technique of prediction. The result revealed that soft 
computing models are more suitable for predicting Hd in North-Western 
Africa and across the globe. 
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1. Introduction 
 

As a result of exponentially increasing costs of fossils, uncertainty of availability 

and transportation, environmental pollution, and general awareness amongst common 

people, the renewable sources which are environmental friendly since they have much 

lower environmental impact compared to conventional sources have enabled smart energy 

to gain more attention from researchers, governments, non-governmental organisations 

(NGOs) and industries etc. in recent years due to the rapid growth of the global energy 

demands. Solar energy in the form of radiation received at the surface of the earth is the 

most preferred sustainable source of renewable energy in the form of solar photovoltaic, 

solar thermal. Other sources of renewable energy are wind, biomass, small and big hydro, 

tidal, wave, ocean etc. as a result of their inexhaustible nature and abundant availability 

globally. These attributes make solar energy to be accepted worldwide as a key energy 
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source for the future with respect to the environmental issues associated with fossils as well 

as their limited reserves. Therefore, solar energy is the best substitute of fossils owing to 

the ever growing demand for energy globally. In fact, about 40 GW of solar photovoltaics 

(PV) capacity was installed in 2014 and the International Energy Agency, IEA [1] predicts 

that by 2050, photovoltaic (PV) as a renewable energy source (solar energy) may become 

one of the most promising sources of energy that will provide about 11% of global 

electricity production and would reduce 2.3 gigatonnes of CO2 emissions per year. As a 

result, more and more penetration of solar energy technologies to the worlds’ energy sector 

is indeed appealing for supplying a notable part of the electricity, heating, cooling, cooking, 

and drying of all types of things: clothes, agricultural produce, cash crops, and bricks etc. 

Therefore, a good working knowledge of available solar energy obtained principally from 

global solar radiation with its diffuse and direct components in a particular location are of 

great importance in designing and sizing of solar energy conversion systems. 

Diffuse solar radiation is the component of global solar radiation reaching the 

earth’s surface after having been scattered from the direct horizontal irradiation by 

molecules, aerosols or suspended particular matter such as black carbon, organic carbon, 

dust and sea salt in the atmosphere. Diffuse solar radiation plays an important role in 

determining the gross primary productivity, net ecosystem exchange of carbon dioxide, 

light use efficiency, changing colour of the sky and baseline for estimating and 

understanding diffuse solar radiation parameters such as diffuse solar radiation and global 

solar radiation on surfaces, diffuse photosynthetically active radiation etc. Moreover, solar 

energy among other sources of renewable energy has remained the most viable source of 

energy that has the capacity to sustain and maintain all the activities and processes that 

support life of animals, supply heat to the atmosphere and lands, generate its wind, drive 

the water cycle, warm the ocean and support life of plants.  

The accurate determination and clear understanding of the diffuse solar radiation 

parameters is required for many applications such as energy management, solar energy, 

light studies, architectural research, hydrological process and biometeorology, crop 

production, remote sensing of vegetable and carbon cycle modelling, designing and sizing 

photovoltaic systems, development of thermal and electrical solar energy devices [2-6]. 

Diffuse solar radiation arises as a result of the interaction between the solar 

radiation incident on the top of the earth’s atmosphere and the matter within it. Thus, 

understanding how this radiometric flux interacts with the matter within it and relates with 

its immediate environment thereby influencing diffuse light availability for energy, sky 

colour, agricultural, material and technological production and utilization for man’s need 

is of utmost importance for modelling and estimating diffuse solar radiation in a particular 

geographical environment.  

Diffuse solar radiation varies from one geographical location to another. It is a 

function of meteorological parameters such as evaporation, effects of cloudiness, relative 

humidity, precipitation, temperature, sunshine duration, extraterrestrial solar radiation, and 

reflection of the environs; geographical parameters such as latitude, longitude and 

elevation of the site; geometrical factors such as azimuth angle, sun azimuth angle; 

astronomical parameters like solar constant, earth-sun distance, solar declination and hour 

angle; physical parameters such as scattering air molecules, water vapour content, 

scattering of dust and other atmospheric constituents like O2, N2, CO2, and O. 

Measurement of diffuse solar radiation is often performed in many parts of the 

world by mounting a pyranometer on the axis of the ring on a roof top so as to receive only 

diffuse solar radiation and the ring is normally adjusted regularly to ensure that the direct 
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irradiance does not reach the pyranometer. As a result of cost of measuring equipment, its 

maintenance and calibration requirements, in rural and developing countries in Africa and 

several places around the world, several empirical models had been developed in Africa 

and other locations across the globe that can produce diffuse solar radiation data without 

the substantial cost of the instrumentation network that would otherwise be needed [7-10]. 

The most primitive model for estimating diffuse solar radiation was developed by 

Liu and Jordan [11]. These solar energy researchers correlated diffuse fraction (Hd/H) with 

clearness index (kt). Their investigation has been adopted by numerous solar energy 

researchers in Nigeria and Egypt and across the globe as a baseline further developing 

regression models for estimating diffuse solar radiation using the same parameter, other 

meteorological parameters, geographical parameters, geometrical parameters and 

astronomical parameters that will best fit the local climate of their study.  

However, diffuse solar radiation and other components of solar radiation such as 

direct normal irradiance, photosynthetically active radiation, evapotranspiration etc. have 

been predicted employing different soft computing techniques in recent times. This 

constitutes a widely accepted technique offering an alternative way to synthesize complex 

problems associated with solar energy prediction. These problems include inability to 

handle non-linear relationships in data; applying only calculable atmospheric, 

meteorological, astronomical, geographical, geometrical parameters such as extraterrestrial 

solar radiation, latitude, altitude, longitude, maximum sunshine duration, azimuth angle, 

solar declination, cosine of solar zenith angle, and hour angle. The soft computing 

technique has the capacity of accepting many input parameters for a particular model which 

is not possible applying regression technique and this strengthens its reliability. Therefore, 

applying soft computing techniques compared to regression techniques according to 

previous studies offers greater accuracy with prediction error in a range (less than 20 %) 

and could be very good in terms of diffuse solar radiation prediction as more and more soft 

computing approaches are demanded in the domains of renewable energy resource 

prediction [12-21]. 

Therefore, the main purpose of the study was to review regression models fitted in 

literature for predicting diffuse solar radiation in North-Western Africa and its objectives 

are identifying several input parameters and functional forms ever applied for predicting 

diffuse solar radiation in North-Western Africa; classify the regression models commonly 

employed in this part of Africa according to the main input parameters; compare the 

performance of regression and soft computing models applied and decide the best 

technique that can yield high accuracies of estimation for future purposes and finally 

identify the research gap. 

 

 

2. Basic Parameters 
 

The principal parameter of sunshine duration fraction, daily extraterrestrial 

radiation on the horizontal surface is significant for the prediction of diffuse solar radiation. 

Sunshine duration fraction is the ratio of actual sunshine duration to maximum possible 

sunshine duration expressed theoretically as: 

  tantancos
15

2 1  

oS         (1) 
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Where  is the latitude,   is the solar declination given by Yaniktepe and Genc [22] and n 

is the number of days of the year starting from first January. The daily extraterrestrial solar 

radiation is the solar radiation intercepted by horizontal surface during a day without the 

atmosphere and hourly extraterrestrial radiation has similar definition. 

Hourly extraterrestrial solar radiation on the horizontal surface is given by Zhang 

et al. [23] as: 
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While the daily extraterrestrial solar radiation on the horizontal surface is given by 

Yaniktepe and Genc [23] as: 
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Where the mean sunrise hour angle  s   can be evaluated as:  

  tantancos 1  

s         (5) 

ISC is the solar constant, 
1 and 

2 are the limit hour angle of an hour, in which 
2  is the 

larger, all in degrees and other symbols retain their usual meaning. 

 

 

3. Evaluation Metrics 
 

Evaluation, principally compares how well the observed and predicted fit each 

other. This evaluation is applied at numerous steps of the computing model development 

as for instance during the evaluation of the prediction model itself (during the training of a 

statistical model for instance), for judging the improvement of the computing model after 

some modifications and for comparing numerous computing models. As previously 

mentioned, this performance comparison is not easy for numerous reasons such as different 

predicted time horizons, numerous time scales of the predicted data and variability of the 

meteorological conditions from one site to another one. It works by comparing the 

predicted outputs 𝑦̂ with observed data y which are also measured data themselves linked 

to an error (or precision) of a measure.  

Graphic tools are available for predicting the adequacy of the computing model with 

the experimental measurements via: 

1. Time series of predicted diffuse solar radiation in comparison with measured 

diffuse solar radiation which allows visualizing easily the estimation quality. In Fig. 

1a, for instance, high estimate accuracy in clear-sky conditions and a low one in 

partly cloudy conditions can be seen. 

2. Scatter plots of estimated over measured diffuse solar radiation(as shown in Fig. 

1b) which can reveal systematic bias and deviations depending on the diffuse solar 

radiation conditions and show the range of deviations that are related to the 

estimates.  

3. Receiver Operating Characteristic (ROC) curves which compare the rates of true 

positives and false positive.  
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Fig. 1. a) Time series of predicted and measured global radiation for 2008 in Ajaccio (France); b) 
Scatter plot of predicted vs. measured global radiation in Ajaccio (France); c) Example of ROC 
curve (an ideal ROC curve is near the upper left corner). 
 

Up till now, there is no standard evaluation measures accepted for diffuse solar 

radiation measurement, which makes the comparison of the estimating methods difficult. 

Sperati et al. [24] presented a benchmarking exercise within the framework of the 

European Actions Weather Intelligence for Renewable Energies (WIRE) with the purpose 

of evaluating the performance of state of the art computing models for short term renewable 

energy prediction or forecasting. This research is a very good example of reliability 

parameter utilization. They concluded that: “More work using more test cases, data and 

computing models needs to be performed in order to achieve a universal overview of all 

possible conditions. They also pointed out that test cases located all over Europe, the US 

and other relevant countries should be considered, in an effort to represent most of the 

possible meteorological conditions”. This study therefore illustrates very well the 

difficulties of performance comparisons encountered for diffuse solar radiation prediction. 

The commonly applied statistics for diffuse solar radiation prediction include the following: 

The Mean Bias Error (MBE) represents the mean bias of the prediction: 

    



N

i
iyiy

N
MBE

1
ˆ

1
       (6) 

  

 𝑦̂ is the predicted diffuse solar radiation, y the measured diffuse solar radiation and N the 

number of observations. The prediction will under-estimate or over-estimate the 

observations. Thus, MBE is not a good statistical indicator for the reliability of a computing 

model because the errors compensate each other but it allows seeing how much it 

overestimates or underestimates.  

a) 
b) 

c) 
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The Mean Absolute Error (MAE) is appropriate for comparing diffuse solar 

radiation estimation with linear cost functions, i.e., where the costs resulting from a poor 

prediction are proportional to the estimation error: 

   



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i
iyiy

N
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1
ˆ

1
        (7) 

The mean square error (MSE) applies the squared of the difference between 

observed and estimated data. This statistical indicator penalizes the highest gaps: 

    
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MSE is principally the statistical parameter which is minimized by the training algorithm.  

The Root Mean Square Error (RMSE) is more sensitive to big prediction errors, 

and thus is good for applications where small errors are more tolerable and larger errors 

cause disproportionately high costs, as in the case of utility applications 

(http://www.cost.eu/about_cost). It is probably the reliability parameter that is most 

appreciated and employed:  
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The Mean Absolute Percentage Error (MAPE) is close to the MAE but each gap 

between observed and predicted value is divided by the observed value so as to consider 

the relative gap. 
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This statistical indicator has a challenge that it is unstable when y(i) is near zero and it 

cannot be defined for y(i)=0. 

Of recent, these errors are normalized particularly for the RMSE; as reference the 

mean value of global radiation is generally employed but other definitions can be applied:  
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       (11) 

With 𝑦̅ is the mean value of y. Other statistical indicators exist and can be employed as the 

correlation coefficient (R), coefficient of determination (R2), or the index of agreement (d) 

which is normalized between 0 and 1.  

As the prediction accuracy strongly depends on the location and time period applied 

for evaluation and on other parameters, it is difficult to evaluate the quality of estimation 

from accuracy metrics alone. Then, it is best to compare the accuracy of different 

estimations against a common set of test data Pelland et al. [25]. “Trivial” prediction 

approach can be applied as a reference [26], the most common one is the persistence model 

(“things stay the same”, Trapero et al., 2015) where the prediction is always equal to the 

last known data point. The diffuse solar radiation has a deterministic component due to the 

geometrical path of the sun. This characteristic may be included as a constraint to the 

simplest form of persistence in considering as an example, the measured data of the 

previous day or the previous hour at the same time as a prediction value. Other common 

reference forecasts include those based on climate constants and simple autoregressive 

methods. Such comparison with referenced NWP computing model is shown in Fig. 2. 

Generally, after 1 hour the forecast is better than persistence. For forecast horizons of more 
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than two days, climate averages show lower errors and should be preferred for diffuse solar 

radiationprediction. 

 

 
Fig. 2. Relative RMSE of forecasts (persistence, auto regression, and scaled persistence) and of 
reference models depending on the forecast horizon Lauret et al. [27]. 
 

Classically, a comparison of performance is performed with a reference computing 

model and to do it, a skill factor is employed. The skill factor or skill score defines the 

difference between the forecast and the reference forecast normalized by the difference 

between a perfect and the reference forecast Lauret et al. [27]: 

reference
MSE

forecatd
MSE

reference
Metric

castperfectfoe
Metric

reference
Metric

forecasted
Metric

SkillScore 




 1     (12) 

Its value thus ranges between 1 (perfect forecast) and 0 (reference forecast). A negative 

value indicates a performance which is even worse compared to the reference (observed 

data). Skill scores can be adopted not only for comparison between observed and predicted 

diffuse solar radiation values but also for inter-comparisons of different diffuse solar 

radiation prediction techniques. 

 

 

4. Regression Models  
 

A regression model relates diffuse solar radiation (Hd) with other easily measurable 

parameters such as clearness index, mean daily extraterrestrial solar radiation, sunshine 

fraction and cloud cover by applying concise mathematical functions. As a result of its 

simplicity and high operability, the regression model is much more convenient for 

engineering applications.  

Several regression models have been reported in literature for prediction Hd on the 

horizontal surface either on hourly mean basis (HB) or daily mean basis (DB) or monthly 

mean daily basis (MB) in Nigeria and Egypt. In this review, the Hd models are classified 

according to the basis of their input parameters applied in correlating with either diffuse 

fraction (Hd/H) or diffuse coefficient (Hd/Ho).  

It has been accepted that Hd is relatively affected by meteorological parameters, 

astronomical factors, geographical factors, and geometrical factors [7, 9, 28-29]. This could 

be attributed to the uniqueness of local climate in determining the meteorological and 
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atmospheric parameters that best fit that particular locality. This also depends on the 

availability of input meteorological/atmospheric parameter(s) that a given radiometric 

station or an individual is capable of measuring routinely which finally turns out to be the 

best input parameter at the disposal of the researcher for predicting Hd in that location 

factors [7, 9]. Thus, in North-Western Africa, the models for predicting Hd can be classified 

into six (6) following categories based on the employed meteorological and atmospheric 

parameters via: 

1. Clearness index-based models 

2. Sunshine-based models 

3. Cloud-based models 

4. Extraterrestrial Solar Radiation-based models 

5. Monthly-based models 

6. Hybrid Parameter-based models  

 

4.1 Clearness Index-Based Models 
The clearness index (kt) indicates the percentage depletion by the sky of the 

incoming solar radiation and therefore gives both the level of availability of solar radiation 

and changes in the atmospheric condition in a given environment [8, 30-32]. 

Mathematically, clearness index is the ratio of horizontal global solar radiation to the 

extraterrestrial solar radiation (Ho) on daily or monthly basis as found in literature 

expressed as: 

oH

H

tk            (13) 

For this reason, clearness index is closed related to Hd, hence, it has been known as 

a determinant parameter for estimation of Hd. One of the greatest characteristics of the 

models from this class is their convenient application, since for utilizing them only 

measured H data is needed. Numerous functional forms (exponential form, logistic form, 

logarithm form, second order, third order and power form) have been applied for estimating 

HB, DB and MB diffuse horizontal irradiation in literature are introduced according to their 

developing year under this section.  

 

4.1.1 Group 1 

Empirical models from this group are parameterized as the first-order polynomial 

function of the clearness index according to their functional forms and developing year. 

The functional forms are as follows: 
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Ezekwe and Ezeilo [33] developed the following MB models in Nsukka 
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For January to May 
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Said and Ibrahim [34] developed the following MB model for Cairo, Egypt as: 
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Maduekwe and Chendo [35] developed HB diffuse solar radiation for Lagos as: 
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Babatunde and Aro [36] established the following MB model for Ilorin as: 
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Maduekwe and Chendo [37] proposed the following HB models for Lagos 
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Trabea [38] obtained the following MB model for AL-Arish, AL-Tahrir, Marsa Matroh, 

Cairo, Al-Kharga and Aswan located in Egypt as: 
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Maduekwe and Garba [39] developed the following HB models for Lagos and Zaria with 

the appropriate intervals as: 
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Shaltout et al. [40] developed the following MB models for Cario and Aswan in Egypt. 

For Cario 
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











o

d

H

H

H

H
08.193.0         (25a) 

For Aswan 













o

d

H

H

H

H
16.101.1         (25b) 

El-Sebaii and Trabea [41] developed the following MB models for four Egyptian locations’ 

For Matruh 













o

d

H

H

H

H
435.1299.1         (26a) 

For Al-Arish 













o

d

H

H

H

H
550.1377.1         (26b) 

For Rafah 

(26c) 

For Aswan 











o

d

H

H

H

H
339.0580.0         (26d) 

Burari [42] developed the following MB models for Bauchi as follows: 













o

d

H

H

H

H
804.0775.0         (27) 

Ugwuoke and Okeke [43] developed the following models for Nsukka as: 













o

d
H

H
H 1143.0137255.0         (28) 

Khalil and Shaffie [44] established the following HB models for Cario, Egypt as: 













o

d

H

H

H

H
517.6817.5         (29) 

Okundamiya et al. [45] established the following MB models for six Nigerian locations 

For Sokoto 













o

d

H

H

H

H
2566.10658.1         (30a) 

For Maiduguri 













o

d

H

H

H

H
2526.10600.1         (30b) 

For Abuja 













o

d

H

H

H

H
2461.10506.1         (30c) 

For Ikeja 













o

d

H

H

H

H
2461.10467.1         (30d) 













o

d

H

H

H

H
531.1257.1



 

Peer-Reviewed Article   Trends in Renewable Energy, 3 

 

 

Tr Ren Energy, 2017, Vol.3, No.2, 160-206. doi: 10.17737/tre.2017.3.2.0042 170 

 

For Enugu  













o

d

H

H

H

H
2467.10454.1         (30e) 

For Benin City 













o

d

H

H

H

H
2419.10387.1         (30f) 

Nwokolo and Ogbulezie [10] developed the following MB models for all sky and clear sky 

in numerous stations in six tropical ecological zones in Nigeria. 

For Port Harcourt (All sky) 











o

d
H

H
H 50.13273.14         (31a) 

For Port Harcourt (Clear sky) 











o

d
H

H
H 922.16874.1         (31b) 

For Owerri (All sky) 











o

d
H

H
H 031.7814.10         (31c) 

For Owerri (Clear Sky) 











o

d
H

H
H 21.23400.5         (31d) 

For Ibadan (All sky) 











o

d
H

H
H 542.9059.12         (31e) 

For Ibadan (Clear Sky) 











o

d
H

H
H 902.264955.7        (31f) 

For Abuja (All sky) 











o

d
H

H
H 008.13076.14         (31g) 

For Abuja (clear sky) 











o

d
H

H
H 757.49705.35         (31h) 

For Maiduguri (All sky) 











o

d
H

H
H 256.19049.18         (31i) 

For Maiduguri (clear sky) 











o

d
H

H
H 136.45121.33         (31j) 

For Sokoto (All sky) 
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









o

d
H

H
H 404.20008.19         (31k) 

For Sokoto (Clear sky) 











o

d
H

H
H 1059.38579.7         (31L) 

 

4.1.2. Group 2 

Empirical models from this group are parameterized as the second-order 

polynomial function of the clearness index according to their functional forms and 

developing year. The functional forms are as follows: 
2
























oo

d

H

H
c

H

H
ba

H

H
        (32) 

Trabea [38] obtained the following MB model for AL-Arish, AL-Tahrir, Marsa Matroh, 

Cairo, Al-Kharga and Aswan located in Egypt as: 
2

0366.1384.0534.0 






















oo

d

H

H

H

H

H

H
      (33) 

El-Sebaii and Trabea [41] developed the following MB models for four Egyptian locations’ 

For Matruh 
2

439.15170.18914.4 






















oo

d

H

H

H

H

H

H
      (34a) 

For Al-Arish 
2

778.14540.16138.4 






















oo

d

H

H

H

H

H

H
     (34b) 

For Rafah 
2

312.3652.5635.2 






















oo

d

H

H

H

H

H

H
      (34c) 

For Aswan 
2

459.2147.2945.10 






















oo

d

H

H

H

H

H

H
      (34d) 

Burari [42] developed the following MB models for Bauchi as follows: 
2

474.031.1908.0 






















oo

d

H

H

H

H

H

H
      (35) 

Okundamiya and Nzeako [46] developed the following MB models for selected cities in 

Nigeria 

For Abuja 
2

583.05902.08733.0 






















oo

d

H

H

H

H

H

H
      (36a) 
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For Benin City 
2

4755.0809.09467.0 






















oo

d

H

H

H

H

H

H
      (36b) 

For Katisna 
2

166.564.7031.3 






















oo

d

H

H

H

H

H

H
      (36c) 

Sanusi and Abisoye [47] proposed the following MB models for Lagos, Nigeria as: 
2

3199.02654.19676.0 






















oo

d

H

H

H

H

H

H
      (37) 

Okundamiya et al. [45] established the following MB models for six Nigerian locations 

For Sokoto 
2

1600.04433.11198.1 






















oo

d

H

H

H

H

H

H
      (38a) 

For Maiduguri 
2

0845.10103.07087.0 






















oo

d

H

H

H

H

H

H
     (38b) 

For Abuja 
2

5466.06674.08994.0 






















oo

d

H

H

H

H

H

H
     (38c) 

For Ikeja 
2

5340.07240.09225.0 






















oo

d

H

H

H

H

H

H
     (38d) 

For Enugu  
2

3753.08786.09571.0 






















oo

d

H

H

H

H

H

H
      (38e) 

For Benin City 
2

1983.00627.19994.0 






















oo

d

H

H

H

H

H

H
      (38f) 

Nwokolo and Ogbulezie [10] developed the following MB models for all sky and clear sky 

in several locations in six tropical ecological zones in Nigeria. 

For Port Harcourt (All Sky) 
2

195.0091.1011.1 






















oo

d

H

H

H

H

H

H
      (39a) 

For Port Harcourt (Clear Sky) 
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2

44.10642.12262.34 






















oo

d

H

H

H

H

H

H
      (39b) 

For Owerri (All Sky) 
2

257.0003.1987.0 






















oo

d

H

H

H

H

H

H
      (39c) 

For Owerri (Clear Sky) 
2

80.39749.4781.13 






















oo

d

H

H

H

H

H

H
      (39d) 

For Ibadan (All Sky) 
2

447.0825.0942.0 






















oo

d

H

H

H

H

H

H
      (39e) 

For Ibadan (Clear Sky) 
2

75.7377.7786.20 






















oo

d

H

H

H

H

H

H
      (39f) 

For Abuja (All Sky) 
2

195.0020.1981.0 






















oo

d

H

H

H

H

H

H
      (39g) 

For Abuja (Clear Sky) 
2

0.15355.17595.49 






















oo

d

H

H

H

H

H

H
      (39h) 

For Maiduguri (All Sky) 
2

456.0721.0907.0 






















oo

d

H

H

H

H

H

H
      (39i) 

For Maiduguri (Clear Sky) 
2

178.7805.9675.29 






















oo

d

H

H

H

H

H

H
      (39j) 

For Sokoto (All Sky) 
2

852.2750.4132.2 






















oo

d

H

H

H

H

H

H
      (39k) 

For Sokoto (Clear Sky) 
2

001.0082.1678.0 






















oo

d

H

H

H

H

H

H
      (39L) 

 

4.1.3. Group 3 
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Empirical models from this group are parameterized as the third-order polynomial 

function of the clearness index according to their functional forms and developing year. 

The functional forms are as follows: 
32



































ooo

d

H

H
d

H

H
c

H

H
ba

H

H
      (40) 

Said and Ibrahim [34] developed the following MB model for Cairo, Egypt as: 
32

383.0194.0279.0636.0 

































ooo

d

H

H

H

H

H

H

H

H
    (41) 

El-Sebaii and Trabea [41] developed the following MB models for four Egyptian locations’ 

For Matruh 
32

38.46179.56492.5403.113 

































ooo

d

H

H

H

H

H

H

H

H
    (42a) 

For Rafah 
32

543.14519.3058.22140.6 

































ooo

d

H

H

H

H

H

H

H

H
    (42b) 

For Aswan 
32

42.24170.47275.30681.65 

































ooo

d

H

H

H

H

H

H

H

H
   (42c) 

Olopade and Sanusi [48] developed the following MB model for Ilorin as: 
32

848.2936.4154.1910.0 

































ooo

d

H

H

H

H

H

H

H

H
 7.01.0 












oH

H
 (43) 

Okundamiya et al. [45] established the following MB models for six Nigerian locations 

For Sokoto 
32

4009.5592.99082.61699.2 

































ooo

d

H

H

H

H

H

H

H
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For Enugu  
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For Benin City 
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4.1.4. Group 4 

Empirical models from this group are parameterized as the four-order polynomial 

function of the clearness index according to their functional forms and developing year. 

The functional forms are as follows: 
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Bamiro [49] developed the following HB models for Nsukka as: 
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4.1.5 Group 5 

In this sub-class, exponential form of diffuse fraction was correlated with 

clearness index in forms: 










 oH
Hb

d a
H

H
exp          (47) 

Sanusi and Abisoye [47] proposed the following MB models for Lagos, Nigeria as: 

 










 oH
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H 2.2

exp2313.1         (48) 

 

4.1.6 Group 6 

In this sub-class, Liu and Jordan type model was modified by correlating diffuse 

fraction with power form of clearness index in the form: 
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
          (49) 

Sanusi and Abisoye [47] proposed the following MB models for Lagos, Nigeria as: 
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4.2 Sunshine-Based Models 
Sunshine-based models are the most frequently employed model for predicting 

diffuse solar radiation in Nigeria and Egypt as a result of its availability and reliable 

measured data in most meteorological stations in Nigeria and Egypt. This radiometric 

model modified from Liu and Jordan [11] model have been applied by countless number 

of researchers for predicting the hourly, daily and monthly mean daily diffuse solar 

radiation on the horizontal surface for several stations within Nigeria and Egypt and beyond 

by employing meteorological parameters of the site of interest as stated in this class. Thus, 

the relation is given as: 

         (51) 

Where a and b are the empirical constants, S is the measure of sunshine duration and So is 

the daily maximum possible sunshine duration. 

 

4.2.1 Group 1 

Empirical models from this group are parameterized as the first-order polynomial 

function of the sunshine fraction according to their functional forms and developing year. 

The functional forms are as follows: 













o

d

S

S
ba

H

H
         (52) 








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
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S
ba

H

H
         (53) 

Said and Ibrahim [34] developed the following MB model for Cairo, Egypt as: 











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S
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59.079.0         (54) 

Maduekwe and Chendo [37] developed the following DB and MB models for Lagos. 

For DB 




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For MB 
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Trabea [38] obtained the following MB model for AL-Arish, AL-Tahrir, Marsa Matroh, 

Cairo, Al-Kharga and Aswan located in Egypt as: 


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El-Sebaii and Trabea [41] developed the following MB models for four Egyptian locations’ 

For Matruh 
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
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Khalil and Shaffie [44] established the following HB models for Cario, Egypt as: 
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4.2.2 Group 2 

Empirical models from this group are parameterized as the second-order 

polynomial function of the sunshine fraction according to their functional forms and 

developing year. The functional forms are as follows: 
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Said and Ibrahim [34] developed the following MB model for Cairo, Egypt as: 
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Maduekwe and Chendo [37] developed the following DB and MB models for Lagos. 

For DB 
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For MB 
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Trabea [38] obtained the following MB model for AL-Arish, AL-Tahrir, Marsa Matroh, 

Cairo, Al-Kharga and Aswan located in Egypt as: 
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El-Sebaii and Trabea [41] developed the following MB models for four Egyptian locations’ 
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4.2.3 Group 3 

Empirical models from this group are parameterized as the third-order polynomial 

function of the sunshine fraction according to their functional forms and developing year. 

The functional forms are as follows: 
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El-Sebaii and Trabea [41] developed the following MB models for four Egyptian locations’ 
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For Aswan 
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Okundamiya et al. [45] established the following MB models for six Nigerian locations 

For Sokoto 
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For Maiduguri 
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For Abuja 
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For Ikeja 
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For Enugu  
32

9322.05841.17339.01179.0 

































oooo

d

S

S

S

S

S

S

H

H
   (67e) 

For Benin City 
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4.3 Cloud Cover-Based models 
Cloud cover as a climate variable is the fraction of the sky obscured by clouds when 

observed from a given locality. Cloud cover data are periodically obtained from 

meteorological stations or satellites-derived and are expressed in percent (%) of the 

maximum cloud amount. Cloud amount is mostly classified into several categories of 0 – 

24%, 25 – 49%, 50 – 74% and 75 – 100%. The implication is that zero percent implies no 

visible cloud in the sky while hundred percent cloud amount indicates no clear sky is visible. 

Researchers in the domain of renewable energy in the past have investigated and simulated 

regression computing models to relate cloud amount conditions and diffuse solar radiation 

owing to the fact that as diffuse fraction or diffuse coefficient increases, clouds cover 

increases as well. This is because of the absorption of water vapour’s waveband selective 

in the solar spectrum that is, in cloudy and humid conditions, the absorption of solar 

radiation in the infrared portion of the solar spectrum is enhanced whereas absorption in 
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the diffuse solar radiation waveband does not vary significantly as shown in the relations 

below. 

 

4.3.1. Group 1 

Empirical models from this group are parameterized as the first-order polynomial 

function of the diffuse fraction or diffuse coefficient with cloud cover (C) or cloudiness 

index according to their functional forms and developing year. The functional forms are as 

follows: 

 Cba
H

H d           (68) 
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         (69) 
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


8

C
ba
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H

o
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Erusiafe and Chendo [50] developed HB model for Lagos as: 

 C
H

H d 316.10859.0          (71) 

Okundamiya et al. [45] established the following MB models for six Nigerian locations 

For Sokoto 

 C
H

H d 0439.01505.0          (72a) 

For Maiduguri 

 C
H

H d 0528.01202.0          (72b) 

For Abuja 

 C
H

H d 0614.01052.0          (72c) 

For Ikeja 

 C
H

H d 0706.00792.0          (72d) 

For Enugu  

 C
H

H d 0669.00888.0          (72e) 

For Benin City 

 C
H

H d 0759.00761.0          (72f) 

 
4.4 Monthly-Based Models 

Monthly-based models are applied for estimating diffuse solar radiation as a result 

of variation effects on diffuse solar radiation striking at ground level in a particular location 

due to the movement on the earth on its axis. Thus, the functional forms and models 

employed in Africa are introduced in this section.   

 

4.4.1 Group 1 

In this group, clearness index is corrected to month of the year (M) in the form:  
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     32
MdMcMbaHd         (73) 

Ugwuoke and Okeke [43] developed the following models for Nsukka as: 

     32
03918.08832.05095.62667.47 MMMHd      (74) 

 
4.5 Global Solar Radiation-Based models 

Global solar radiation-based models are employed by solar radiation researchers 

for predicting diffuse solar radiation as a result of their great importance and influence for 

determining the diffuse solar radiation striking a particular location at the top of the 

atmosphere and their comprehensive impact on the diffuse solar radiation on the horizontal 

surface on ground level. Thus, the functional forms and models employed in Africa are 

presented in this section.   

 

4.5.1 Group 1 

In this group, diffuse solar radiation is correlated to global solar radiation (H) in the 

form:  

   2HcHbaH d          (75) 

Ugwuoke and Okeke [43] developed the following models for Nsukka as: 

   29774.075992.1253439.62 HHHd       (76) 

 

4.6 Hybrid Parameter-based models  
As far as the input parameter for predicting diffuse solar radiation on the horizontal 

surface vary periodically with the local climate in a particular geographical location, it 

therefore implies that to accurately develop a model that can fit a locality, the solar energy 

researcher must test the local climate with various input parameters owing to the 

availability of the meteorological parameters at the disposal of the researcher. Several solar 

energy researchers in Nigeria and Egypt have observed that hybrid parameters-based 

models fit local climate more than one variable – sunshine-based, global solar radiation-

based and cloud cover – based commonly employed for predicting diffuse solar radiation. 

In this section, numerous hybrid parameter-based models are presented and classified 

based on their input parameters and developing year. 

 

4.6.1 Group 1 

In this group, sunshine duration and clearness index were incorporated with diffuse 

for estimating diffuse solar radiation in the forms: 
























ooo

d

S

S
c

H

H
ba

H

H
        (77) 

2



































oooo

d

S

S
d

S

S
c

H

H
ba

H

H
       (78) 

2
























ooo

d

S

S
c

H

H
ba

H

H
        (79) 
























oo

d

S

S
c

H

H
ba

H

H
        (80) 



 

Peer-Reviewed Article   Trends in Renewable Energy, 3 

 

 

Tr Ren Energy, 2017, Vol.3, No.2, 160-206. doi: 10.17737/tre.2017.3.2.0042 183 

 

2



































ooo

d

S

S
d

S

S
c

H

H
ba

H

H
       (81) 

2
























oo

d

S

S
c

H

H
ba

H

H
        (82) 

Maduekwe and Chendo [37] developed the following DB and MB models for Lagos. 

For DB 
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For MB 
























ooo

d

S

S

H

H

H

H
06.011.0372.0        (83g) 

2

300.022.011.0431.0 

































oooo

d

S

S

S

S

H

H

H

H
     (83h) 

2

067.012.0385.0 






















ooo

d

S

S

H

H

H

H
      (83i) 
























oo

d

S

S

H

H

H

H
0012.035.136.1       (83j) 

2

25.017.044.1429.1 

































ooo

d

S

S

S

S

H

H

H

H
     (83k) 

2

076.044.1383.1 






















oo

d

S

S

H

H

H

H
      (83L) 

Trabea [38] obtained the following MB model for AL-Arish, AL-Tahrir, Marsa Matroh, 

Cairo, Al-Kharga and Aswan located in Egypt as: 
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Khalil and Shaffie [44] established the following HB models for Cario, Egypt as: 
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4.6.2 Group 2 

In this group, cloud cover and clearness index were incorporated with diffuse for 

estimating diffuse solar radiation in the forms: 
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Okundamiya et al. [45] established the following MB models for six Nigerian locations 
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4.6.3 Group 3 

In this group, elevation and clearness index were incorporated with diffuse for 

estimating diffuse solar radiation in the forms: 
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Maduekwe and Chendo [37] proposed the following HB models for Lagos 
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Maduekwe and Garba [39] developed the following HB models for Lagos and Zaria with 

the appropriate intervals as: 
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 h
H

H

H

H

o

d 000085.0072.0007.1 









   20.0











oH

H
   (92d) 

 h
H

H

H

H

o

d 00107.0246.136.1 









  78.020.0 












oH

H
   (92e) 

 h
H

H

H

H

o

d 00206.034.0 









    78.0











oH

H
   (92f) 

 

4.6.4 Group 4 

In this group, elevation, atmospheric turbidity and clearness index were 

incorporated with diffuse for estimating diffuse solar radiation in the forms: 

   dc
H

H
ba

H

H

o

d 









 sinh        (93) 

Maduekwe and Chendo [37] proposed the following HB models for Lagos 

   0032.0sinh0037.0155.0018.1 











o

d

H

H

H

H
 30.00 












oH

H
 (94a) 

   06704.0sinh1679.0448.1526.1 











o

d

H

H

H

H
 80.030.0 












oH

H
 (94b) 

   24831.0sinh0258.0232.0 











o

d

H

H

H

H
  













oH

H
80.0   (94c) 
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4.6.5 Group 5 

In this group, solar elevation and clearness index were incorporated with diffuse 

for estimating diffuse solar radiation in the form: 

 Sec
H

H
ba

H

H

o

d 









         (95) 

Maduekwe and Chendo [35] developed HB diffuse solar radiation for Lagos as: 

 Se
H

H

H

H

o

d 0058.0159.0019.1 









   30.00 












oH

H
  (96a) 

 Se
H

H

H

H

o

d 1566.0469.1550.1 









   80.030.0 












oH

H
  (96b) 

 Se
H

H

H

H

o

d 085.0245.0 









    













oH

H
80.0    (96c) 

 

4.6.6 Group 6 

In this group, solar elevation, turbidity coefficients and clearness index were 

incorporated with diffuse for estimating diffuse solar radiation in the forms: 

   500dSec
H

H
ba

H

H

o

d 









        (97) 

   880dSec
H

H
ba

H

H

o

d 









        (98) 

Maduekwe and Chendo [35] developed HB diffuse solar radiation for Lagos as: 

   50000131.00037.0155.0018.1 









 Se

H

H

H

H

o

d  30.00 











oH

H
 (99a) 

   50002722.01679.0448.1526.1 









 Se

H

H

H

H

o

d  80.030.0 











oH

H
 (99b) 

   50010165.00258.0232.0 









 Se

H

H

H

H

o

d   












oH

H
80.0   (99c) 

   88000077.00049.0157.0018.1 









 Se

H

H

H

H

o

d  30.00 











oH

H
 (99d) 

   8802881.01645.0449.1529.1 









 Se

H

H

H

H

o

d  80.030.0 











oH

H
 (99e) 

   8800838.00569.0229.0 









 Se

H

H

H

H

o

d   












oH

H
80.0   (99f) 

 

4.6.7 Group 7 

In this group, sunshine fraction, mean temperature and relative humidity were 

incorporated with diffuse for estimating diffuse solar radiation in the form: 
2



































ooo

d

S

S
dR

S

S
c

S

S
ba

H

H
       (100) 
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Sambo and Doyle [51] established the following MB models for Zaria as: 
2

65.1389.0960.1325.1 

































ooo

d

S

S
R

S

S

S

S

H

H
     (101) 

 

4.6.8 Group 8 

In this group, clearness index, sunshine fraction, mean temperature and relative humidity 

were incorporated with diffuse for estimating diffuse solar radiation in the form: 

 RHe
T

T
d

S

S
c

H

H
ba

H

H

oo

d 































min

max       (102) 

Falayi et al. [52] applied a new combination of meteorological parameters to proposed 

eight MB models for some nominated locations in Nigeria. 

For Sokoto 

 RH
T

T

S

S

H

H

H

H

oo

d 00078.0142.00353.0815.0055.1
min

max 





























   (103a) 

For Maiduguri 

 RH
T

T

S

S

H

H

H

H

oo

d 00023.0152.00364.0830.07795.0
min

max 





























   (103b) 

For Port Harcourt 

 RH
T

T

S

S

H

H

H

H

oo

d 00065.00248.0095.0735.0684.0
min

max 





























   (103c) 

For Owerri 

 RH
T

T

S

S

H

H

H

H

oo

d 0762.0000042.0056.0954.0775.0
min

max 





























   (103d) 

For Enugu 

 RH
T

T

S

S

H

H

H

H

oo

d 0014.0079.0044.0851.0642.0
min

max 





























   (103e) 

For Yola 

 RH
T

T

S

S

H

H

H

H

oo

d 0001.01117.00214.09844.01007.1
min

max 





























   (103f) 

For Jos 

 RH
T

T

S

S

H

H

H

H

oo
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min

max 





























   (103g) 

 

 

5. Discussion  
 

The global sum of regression models reported by peers and researchers for 

predicting diffuse solar radiation in North-Western Africa is ever increasing and relatively 

high, which in turn makes it highly laborious to employ statistical indicators such as Root 

Mean Square Error (RMSE), Sum of the Square of Relative Error (SSRE), Relative 

Standard Error (RSE), Standard Deviation of the residual (SD), Mean Absolute Bias Error 

(MABE), Mean Absolute Percentage error (MAPE), coefficient of determination, 
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uncertainty at 95% (U95), Mean Bias Error (MBE), Mean Percentage Error (MPE), Nash 

Sutcliffe coefficient (NS), Index of Agreement (IG), Mean Absolute Error (MAE) and 

Global Performance Indicator (GPI) etc. to select the best approach for a particular site in 

a single research paper. Recently, Khorasanizadeh and Mohammad [53] classified 

numerous diffuse solar radiation models across the globe into four categories such as 

cleanness index based-models, sunshine based-model, cloud cover-based models and other 

meteorological parameter based-models. 

Sunshine-based models are frequently applied due to their global availability at 

most weathers stations in North-Western Africa. Cloud cover-based models can be 

employed in the absence of clearness index and sunshine-based models but are sensible to 

human biasing [54]. 

Clearness index based-models are the most frequently applied model for predicting 

diffuse solar radiation globally as a result of the availability of are reliable measured global 

solar radiation in most stations around the globe and extraterrestrial solar radiation can be 

calculated theoretically as given in equation (3). This model pioneered by Liu and Jordan 

[11] has been applied by several researchers for estimating diffuse solar radiation for 

several locations across the globe by determining the empirical constants by applying 

meteorological parameters of their chosen site of interest. Apart from Liu and Jordan [11], 

those fitted by Page [55] and Iqbal [56] seem to be universally applicable. However, 

models fitted by numerous researches in Africa [34, 37-39, 57-60] yielded better 

performance and high accuracy in the fitted sites as compared to reported models in 

literature that seem to be universally applicable. This result is in agreement with the report 

in most African countries [33, 43-44, 59, 61-64] confirming that diffuse solar radiation is 

dependent on the local climate and geographical information of a given site.  

Other meteorological parameter-based models are recorded to predict diffuse solar 

radiation with high precision but most of their input parameters are not really available at 

most sites of interest in North-Western Africa and across the globe. 

In this review, the researchers included two meteorological parameters often 

applied by one solar energy researcher to predicting solar radiation in Nigeria via: global 

solar radiation-based models and monthly mean based models. In general, one hundred and 

eighty-eight (188) theoretical models were reported with 33 functional forms and 20 groups 

(sub-class) in this review. Eighty three (83) models with the corresponding 8 functional 

forms and 6 groups were recorded from clearness index-based models representing 

44.14 %, 45models with the corresponding 6 functional forms and 3 groups resulting to 

23.93 % were applied for sunshine-based models; 7 models with 1 functional form and 1 

group amounting to 3.72 %, for cloud cover-based models; 1 model with 1 functional form 

and 1 group yielding to 0.53 % for extraterrestrial solar radiation-based models and 

monthly-based models; and 51 models with 16 functional functions and 8 groups resulting 

to 27.12 % for hybrid parameter-based models as presented in Fig. 8. 

Peers and researchers have shown that it is humanly impossible for now to 

introduce a set of input variables with a particular functional form for optimal prediction 

of diffuse solar radiation in Nigeria and Egypt or any other geographical environment 

across the globe because of its dependence on geographical information and local climate 

of the site [10, 39-40, 41, 45-46, 52, 57-59, 62-64]. To restate this, a brief review of the 

efforts of researchers in North-Western Africa to enhance the accuracy of prediction of 

diffuse solar radiation is presented in the following paragraphs. 

El-Sebaii and Trabea [41] employed sunshine-based model and clearness index-

based model for predictions of diffuse solar radiation on the horizontal surface for four 
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Egyptian locations. The selected locations include Matruth, Al-Arish, Rafah and Aswan to 

represent the weather conditions of the North and South of Egypt. The first, second and 

third order correlations between the diffuse fraction and clearness index produced better 

accurate results compared to the correlations between sunshine fraction and diffuse fraction 

or diffuse coefficients in the selected four locations as shown in Table 1. 

 
Table 1. Statistical indicators for Matruth, Ratah and Aswan El-Sebaii and Trabea [41] 

Stations Degree of 

Correlation 

Correlation 

between 

MBE RMSE MPE (%) 

Matruth First Hd/H and H/Ho 0.07 0.022 1.17 

 Second Hd/H and H/Ho 0.007 0.024 -1.05 

 Third Hd/H and H/Ho 0.006 0.020 -1.07 

 First Hd/H and S/So -0.001 0.003 -0.63 

 Second Hd/H and S/So 0.001 0.002 -0.38 

 Third Hd/H and S/So 0.001 0.002 -0.39 

 First Hd/Ho and S/So 0.003 0.007 -0.72 

 Second Hd/Ho and S/So 0.002 0.001 -0.40 

 Third Hd/Ho and S/So 0.002 0.001 -0.39 

Al-Arish First Hd/H and H/Ho -0.005 0.019 -1.27 

 Second Hd/H and H/Ho -0.005 0.019 -1.07 

 Third Hd/H and H/Ho Very poor fitting 

 First Hd/H and S/So 0.002 0.008 -1.26 

 Second Hd/H and S/So 0.001 0.002 -0.40 

 Third Hd/H and S/So 0.005 0.018 -0.83 

 First Hd/Ho and S/So -0.004 0.015 -1.08 

 Second Hd/Ho and S/So -0.003 0.009 -0.73 

 Third Hd/Ho and S/So 0.003 0.009 -0.54 

Rafah First Hd/H and H/Ho -0.003 0.010 -0.57 

 Second Hd/H and H/Ho -0.003 0.010 -0.38 

 Third Hd/H and H/Ho -0.003 0.011 -0.55 

 First Hd/H and S/So -0.002 0.001 -0.36 

 Second Hd/H and S/So 0.003 0.012 -0.16 

 Third Hd/H and S/So 0.005 0.016 0.46 

 First Hd/Ho and S/So -0.004 0.014 -0.16 

 Second Hd/Ho and S/So 0.001 0.001 -0.12 

 Third Hd/Ho and S/So -0.001 0.001 -0.09 

Aswan First Hd/H and H/Ho -0.003 0.014 -1.07 

 Second Hd/H and H/Ho -0.005 0.012 -0.82 

 Third Hd/H and H/Ho -0.004 0.015 -0.93 

 First Hd/H and S/So -0.002 0.008 -0.43 

 Second Hd/H and S/So -0.003 0.005 -0.40 

 Third Hd/H and S/So -0.003 0.0114 -0.38 

 First Hd/Ho and S/So -0.001 0.005 -0.27 

 Second Hd/Ho and S/So -0.002 0.005 -0.25 

 Third Hd/Ho and S/So -0.002 0.008   -0.23 

 

Sanusi and Abisoye [47] applied Page model (first order polynomial equation), Liu 

and Jordan model (third order polynomial equation), second order polynomial, power and 

exponential models to develop an empirical model for Lagos using eleven years (1999 – 

2009) data. The performances for the models were tested using statistical indicators such 

as Mean Percentage Error (MPE), Mean Bias Error (MBE), Root Mean Square Error 

(RMSE) and coefficient determination (R2). The results revealed that the second-order 

quadratic model yielded reasonably high degree of precision in the forecast of monthly 
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mean daily diffuse solar radiation in the horizontal surfaces as shown in Table 2. These 

results were in agreement with the findings in literature [41, 45-46, 57, 64]. 

 
Table 2. Statistical indication for the models. Sanusi and Abisoye [47] 

Models MPE 

(%) 

RMSE 

(MJm-2day-1) 

MBE 

(MJm-2day-1) 

Coefficient of 

Determination (R2) 

Page (1961) 

(First order 

polynomial) 

4.800 0.129 0.104 0.982 

 

Liu and Jordan 

(1960) 

(Third order 

polynomial) 

 

9.336 

 

0.201 

 

-0.194 

 

0.978 

 

Second-order 

polynomial 

 

0.010 

 

0.048 

 

0.001 

 

0.982 

 

Exponential 

 

0.012 

 

0.051 

 

-0.001 

 

0.980 

 

Power 

 

0.168 

 

0.065 

 

-0.006 

 

0.971 

 

Okundamiya et al. [45] calibrated Okundaniya and Nzeako [46] model for 

numerous numbers of sites, with varying meteorology covering the entire geographical 

zones in Nigeria. The authors tested the performance of the newly calibrated multivariable 

regression model, which uses clearness index and cloud cover as inputs for estimating the 

monthly daily mean diffuse solar radiation, on a horizontal surface in Nigeria with five 

existing empirical models, which utilizes the clearness index, cloud cover, relative 

sunshine duration or the combination of two of these variables as inputs [11, 46, 55, 65-

66]. The results revealed that the calibrated multivariable regression model performed 

better than the other five existing models with a relative percentage error of +6% over 

Nigeria as presented in Table 3. These results justify the recommendation made by Munner 

and Munawwar [67] that the inclusion of cloud cover improves the prediction accuracy of 

diffuse solar radiation on the horizontal surfaces. This result is also comparable to the 

report of numerous researchers in Africa [35, 37, 39, 42, 44, 60, 68-69]. 
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Table 3. Validation results of six studies diffuse radiation model for Nigeria based on 22 years’ 
data sets Okundamiya et al. [45] 

Sites Error 

Terms 

(units) 

Page 

[55] 

Liu and 

Jordan 

[11] 

Butt et 

al. [65] 

Karakoti 

et al. [66] 

Okundamiya 

and 

Nzeako[46] 

Okundamiya 

et al. [45] 

Sokoto r 0.9497 0.9461 0.8446 0.8173 0.9521 0.9967 

RMSE 

(MJ/m2) 

0.4049 0.4219 0.8951 1.0711 0.3966 0.1061 

MBE 

(MJ/m2) 

-0.1652 -0.1832 0.5307 0.7989 -0.1575 -0.0185 

MABE 

(MJ/m2) 

 

0.3261 0.3434 0.6515 0.9239 0.3213 0.0793 

Maiduguri r 0.9470 0.8594 0.9085 0.9246 0.9284 0.9950 

RMSE 

(MJ/m2) 

0.3976 0.6884 0.7798 0.4401 0.4556 0.1981 

MBE 

(MJ/m2) 

-0.1506 -0.2523 -0.0831 0.0467 -0.1606 -0.1592 

MABE 

(MJ/m2) 

0.3269 0.5246 0.7136 0.3557 0.3629 0.1623 

 

 

Abuja r 0.9930 0.9951 0.9175 0.9295 0.9937 0.9980 

RMSE 

(MJ/m2) 

0.1727 0.2427 0.6918 0.5350 0.1802 0.1109 

MBE 

(MJ/m2) 

-0.0744 -0.1414 0.1298 0.1363 -0.0924 -0.0461 

MABE 

(MJ/m2) 

0.1182 0.1836 0.5151 0.4277 0.1461 0.1000 

 

 

Ikeja r 0.9848 0.9933 0.9307 0.9333 0.9875 0.9951 

RMSE 

(MJ/m2) 

0.1615 0.1857 0.7551 0.3119 0.1605 0.1098 

MBE 

(MJ/m2) 

0.0370 0.0662 -0.6056 -0.1614 0.0573 -0.0849 

MABE 

(MJ/m2) 

0.1395 0.1519 0.6550 0.2568 0.1392 0.0913 

 

 

Enugu r 0.9887 0.9890 0.9032 0.8767 0.9887 0.9957 

RMSE 

(MJ/m2) 

0.1348 0.1282 0.5029 0.4102 0.1289 0.0778 

MBE 

(MJ/m2) 

-0.0220 -0.0365 0.0973 -0.0216 -0.0237 -0.0030 

MABE 

(MJ/m2) 

0.1137 0.1018 0.4208 0.3241 0.1113 0.0663 

 

 

Benin-

City 

r 0.9869 0.9849 0.9508 0.9360 0.9865 0.9935 

RMSE 

(MJ/m2) 

0.1537 0.1471 0.5365 0.3942 0.1481 0.1129 

MBE 

(MJ/m2) 

-0.0599 -0.0781 -0.0262 0.0843 -0.0624 -0.0633 

MABE 

(MJ/m2) 

0.1197 0.1170 0.4814 0.2932 0.1162 0.0955 

 

From the report of existing studies, it is clear that from above findings that 

introducing an appropriate set of input for diffuse solar radiation prediction in any 

geographical site and climatic condition is not a viable work. This could be attributed to 
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numerous number of required inputs variables, inaccuracies associated with irrelevant 

variables, difficulty in explaining the model, time consuming task for assembling the 

needed variable and finally its inability to accept many input variables. 

For instant, the Artificial Intelligence (AI) and Computation Intelligence (CI) 

techniques such as Artificial Neural Network (ANN), machine learning, genetic 

programming, support vector machine, Adaptive Neural Fuzzy Inference System (ANFIS) 

and hybrid networks have been widely applied in numerous scientific areas for modeling, 

estimation, prediction, forecasting and optimization such as Support Vector Machine 

(SVM) [70-74]; Hybrid network [17, 70-71]; genetic programming [16, 75], Adaptive 

neural fuzzy inference system [73, 75-77]; and an Automatic Relevance Determination 

(ARD) methodology Bosch et al. [78];can be adopted for predicting diffuse solar radiation 

in North-Western Africa. Various applications of artificial neural networks are reported in 

numerous fields such defense, image impression, mathematics, character recognition, 

aerospace, neurology, meteorology, economic, electronic nose engineering, machine and 

psychology (Nwokolo and Ogbulezie [9]. These methods have been adopted for prediction 

and empirical analysis in market trend forecasting, solar and weather. 

Boland and Scott [18] determined the comparison between the empirical models 

and a fuzzy logic based model to estimate hourly diffuse solar radiation in some locations 

of Australia. The results revealed that coefficients of determination recorded for the fuzzy 

logic model are comparable, and in most cases more suitable than those of empirical 

models. 

Jiang [19] developed a model based Artificial Neural Network (ANN) model to 

predict monthly mean daily diffuse solar radiation in China. The researcher employed 

measured data of eight typical stations for training and data of one station for testing. He 

proceeded by comparing the estimation of ANN model with those of regression models. 

According to the author, the results revealed that ANN model compared to the regression 

model offer is more suitable for estimating diffuse solar radiation in the eight stations 

studied.  

Elminir et al. [13] estimated hourly and daily diffuse radiation of Egypt by applying 

neutral network (ANN) and compared the result with two linear empirical models. The 

performances of the models were determined on the basis of the Mean Bias Error (MBE), 

Root Mean Square Error (RMSE) and correlation coefficient (r) between the estimated and 

measured data. The results reveal that ANN model is more suitable to predict diffuse 

radiation in hourly and daily scales than empirical models. 

Alam et al. [20] employed Artificial Neural Network (ANN) to estimate monthly 

mean hourly and daily diffuse radiation in ten Indian stations with diverse weather 

conditions. They applied different parameter as inputs and used the feedforward back-

propapgation algorithm to train the ANN model. They discovered that that ANN model 

compared to the regression model offer is more suitable for estimating diffuse solar 

radiation in the ten stations studied.  

Lazarevska and Trpovski [21] applied neuro fuzzy inference system with a 

relevance vector machine mechanism for estimation of diffuse solar radiation. They used 

global solar radiation and solar elevation angle as input parameters to estimate the diffuse 

solar radiation. Their result revealed that the new developed technique is really effective 

and remarkably outperformed the existing regression models. 

Soares et al. [14] stimulated a technique based upon artificial neural network (MLP-

ANN) method for estimation of hourly diffuse solar radiation in the city of Sao Paulo, 

Brazil. The result revealed that the estimated diffuse solar radiation values obtained from 
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MLP-ANN technique are more suitable compared to those of empirical models as shown 

in Table 4 and Fig. 3-4. 

 
Table 4. Model Statistics Soares et al. [14] 

 Sample size MBE (MJm-2) RMSE (MJm-2) ts tc 

Correlation model 

 form Oliveira et al. 

(2002) 

15258 -0.0169 0.193 11.16 1.96 

MLP neural-network 

- Experiment I 

2928 0.0116 0.121 5.19 1.96 

MLP neural-network 

- Experiment II 

2928 0.0291 0.152 10.63 1.96 

MLP neural-network 

- Experiment III 

2928 0.0110 0.155 3.86 1.96 

tc is given at a level of confidence of 95 %. 

 

 
 
Fig. 3. Dispersion diagram between the hourly values of diffuse radiation observed and (a) using 
MLP based on 2928 pairs of points and (b) using the correlation model based on 15,258 pairs of 
points (from Oliveira et al. [79]). Dashed line corresponds to diagonal and continuous line 
corresponds to curve fitted by least squares method. The corresponding linear equations are 
indicated in the bottom of each diagram and r is the correlation coefficient Soares et al. [14]. 
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Fig. 4. KT scatter diagram for hourly values of solar radiation. (a) KDF obtained using MLP, based 
on2928 pairs of points and (b) KDF observed in São Paulo City, based on 15,258 pairs of points 
(from Oliveira et al. [79]). The continuous and dashed lines display the fourth-degree polynomial 
curves obtained, respectively, from MLP and Lawrence (1991); Soares et al. [14]. 
 

Lou et al. [15] employed machine learning logarithm to estimate the horizontal sky-

diffuse irradiance and conduct sensitivity analysis for the meteorological parameters. Apart 

from the clearness index, the authors discovered that predictors including solar attitude, air 

temperature, cloud cover and visibility are more suitable for estimating diffuse solar 

radiation component. The Mean Absolute Error (MAE) of the logistic regression using the 

aforementioned predictors was less than 21.5w/m3 and 30w/m3 for Hong Kong and Denver, 

USA as presented in Table 5. 
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Table 5. Results of Logistic Regression Lou et al. [15] 

Regression Predictors Parameters Performance 

  f0 f1 f2 f3 f4 f5 Data of 2008-2012 Data of 2013 

        MAE 

(W/m2) 

R2 MAE 

(W/m2) 

R2 

1 kt -4.61 7.78 0 0 0 0 29.2 0.850 27.5 0.851 

2 kt, µ -4.42 8.75 -1.16 .0 0 0 26.3 0.867 26.2 0.851 

3 kt, µ, Ta -4.37 8.85 -1.38 0.12 0 0 25.7 0.875 25.2 0.866 

4 kt µ, Ta, Cld -3.4 7.4 0.8 0.2 -1 0 23.2 0.400 21.8 0.901 

5 kt, µ, Ta, Cld, VIS -3.3 7.14 0.68 0.13 -1.08 0.18 21.5 0.914 20.0 0.916 

Where Kt is clearness index, µ is the sine of solar attitude angle (sin ( s )), Ta is air temperature, Cld is the cloud amount, VIS is the visibility               

 

Feng et al. [12] proposed four artificial intelligence models including the Extreme 

Learning Machines (ELM), back propagation neural networks optimized by Genetic 

Algorithm (GANN) Random Forest (RF), and Generalized Regression Neural Networks 

(GRNN) for estimating daily diffuse solar radiation at two meteorological stations of North 

China Plain. Daily global solar radiation and sunshine duration were selected as model 

inputs to train the models. The proposed models were compared with the empirical Iqbal 

model to test their performance employing measured daily diffuse solar radiation data. The 

result revealed that the ELM, GANN, RF, and GRNN models all performed much better 

than the empirical Iqbal model for estimating daily diffuse solar radiation. On the whole, 

all the models under-estimated daily diffuse solar radiation for both stations with average 

relative error ranging from 5.8% to 5.4% for all models and 19.1% for Iqbal model in 

Beijing; 5.9% to 4.3% and 26.9% in Zhengzhou respectively. Generally, GANN model 

recorded the best accuracy and ELM ranked the next, followed by RF and GRNN model.  

The ELM model reported a slightly poorer performance but the highest computation speed, 

and both GANN and ELM could be highly recommended for estimating daily diffuse solar 

radiation in North China Plain as presented in Table 6 and Fig. 5. 

 
Table 6: Statistics Performances of different models in estimation daily diffuse solar radiation for 
each Station Feng et al. [12] 

Station  Model RRMSE (%) MAE (MJm-2day-1) NS 

Beijing 

 

 

 

 

 

Zhengzhou 

ELM 17.3 0.760 0.908 

GANN 17.1 0.748 0.909 

RF 18.3 0.841 0.897 

GRNN 19.2 0.951 0.880 

Iqbal 32.9 0.162 0.666 

 

ELM 13.4 0.762 0.924 

GANN 13.4 0.749 0.928 

RF 15.0 0.862 0.910 

GRNN 16.5 0.997 0.892 

Iqbal 35.8 2.359 0.491 
RRMSE is the relative root mean square error, MAE is the mean absolute error and NS is Nash Sutcliffe coefficient 

 

Mohammadi et al. [16] applied Adaptive Neuro-Fuzzy Influence System (ANFIS) 

to select the most influential parameters for prediction of daily horizontal diffuse solar 

radiation (Hd). Ten significant parameters are selected to analyze their impact on estimation 

Hd in the city of Kerman, situated in the south central part of Iran. For this purpose, a 

thorough parameter selection was conducted for the cases with 1, 2 and 3 inputs to 

introduce the best and worst inputs combinations. For the cases with 2 and 3 inputs, 45 and 



 

Peer-Reviewed Article   Trends in Renewable Energy, 3 

 

 

Tr Ren Energy, 2017, Vol.3, No.2, 160-206. doi: 10.17737/tre.2017.3.2.0042 196 

 

120 possible combinations of inputs are considered, respectively. For the cases with one 

input variable, the results revealed that sunshine duration(s) is the most influential variable. 

Moreover, combination of H, Ho and S are the best sets among the cases with 2 and 3 

inputs variables respectively. The observed result revealed that combinations of either 2 or 

3 most relevant inputs would be appropriate to provide a balance between the simplicity 

and high precision. Predictions using the most influential set of 2 and 3 inputs revealed that 

for the ANFIS model with two inputs variables, the mean absolute percentage error, mean 

absolute bias error, root mean square error and correlation coefficient are 23.0579%, 

1.0176 MJ/m2, 1.3052 MJ/m2 and 0.8247, respectively, and for the ANFIS model with 

three inputs they are 18.3143%, 0.8134 MJ/m2, 1.1036MJ/m2 and 0.8783, respectively as 

presented in Table 7 and Fig. 6. 

 
Table 7. Five most and least relevant combination of inputs and ANFIS regression error (RMSE in 
MJ/m2) achieved for training and checking phases Mohammadi et al. [16]. 

Combination No. Combination of Inputs RMSE for Training RMSE for Checking 

Combination 1 H, Ho, S (Ist best model) 1.2417 1.2889 

Combination 9 H, S, and So (2nd best model) 1.2523 1.2968 

Combination 15 H, S, and (3rd best model) 1.2532 1.2971 

Combination 5 H, Ho and Targ (4th best model) 1.2820 1.2925 

Combination 3 H, Ho, and Tmin (5th best model) 1.2902 1.3222 

Combination 28 H, Tmax and RH (1st worst model) 1.8916 1.9339 

Combination 90 So, Tmin and S (2nd worst model) 1.8671 1.8673 

Combination 97 So, Tavg and S (3rd worst model) 1.8571 1.8643 

Combination 94 So, Tmax and S (4th worst model) 1.8395 1.8585 

Combination 117 Tava, RH and Vp (5th worst model) 1.8231 1.8890 
Where S is the sunshine duration, H global solar radiation,   solar declination, Ho extraterrestrial solar 

radiation So maximum possible sunshine duration Vp water vapour pressure, RH relative humidity, Tavg 

average air temperature, Tmin minimum temperature, Tmaxmaximum temperature. 
 

During the last decades, numerous renewable energy researchers have carried out 

number of studies for estimation of diffuse solar radiation mainly by developing different 

soft computing techniques and regression models, but there is still a main challenge 

regarding the development of powerful hybrid soft computing techniques and models with 

high level of reliability and adaptability to achieve accurate predictions just as hybrid 

regression models offer more suitable prediction compared to one parameter-based models. 

Lately, coupling different approaches of soft computing to build a hybrid model has 

received a considerable attention in the renewable energy area. On the whole, it is possible 

to take the advantage of specific nature of different soft computing techniques for 

enhancing the precision. In fact, the particular features of different soft computing 

techniques are able to capture different patterns in the data series. Recent findings from 

literature have revealed that hybrid soft computing approaches would be particularly 

effective and promising for different applications of renewable energy to enhance the 

estimation accuracy and reliability. 

For instance, in a study to determine diffuse solar radiation in the city of Kerman, 

Shamshirband et al. [81] employed a couple model by integrating the support vector 

machine (SVM) with Wavelet Transform (WT) algorithm for estimating daily horizontal 

diffuse solar radiation. In order to test the validity of the coupled SVM-WT method, daily 

measured global and diffuse solar radiation data sets for city of Kerman located in sunny 

part of Iran are utilized. Using the developed SVM-WT model diffuse fraction is related 
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with clearness index as the only input variable. The performance of SVM-WT model is 

calculated against radial basis function SVM (SVM-RBF), Artificial Neural Network 

(ANN) and a third order empirical model established by the researchers. The results 

revealed that the estimated diffuse solar radiation values by the SVM-WT model agreed 

favourably with measured data. The statistical Indicators revealed that the mean absolute 

bias error, root mean square error and correlation coefficient are 0.5757 MJm-2, 

0.6940MJ/m2 and 0.9631, respectively. While for the SVM-RBF ranked next the attained 

values are 1.0877 MJm-2, 1.2583MJ/m2 and 0.8599, respectively. In a nut shell, the study 

revealed that SVM-WT is an efficient method which enjoys much higher precision than 

other models, especially the third order empirical model as shown in Table 8 and Fig. 7. 

 
Table 8. The attained MABE, RMSE and R for all models for the testing data set Shamshirband et 
al. [81]. 

Model MABE (MJ/m2) RMSE (MJ/m2) R 

SVM – WT 0.5757 0.6940 0.9631 

SVM – REF 1.0877 1.2583 0.8599 

ANN 1.1267 1.3183 0.8392 

Empirical Model 1.2171 1.4548 0.8156 

 

The regression models for predicting diffuse solar radiation were examine 

extensively and its performances were compared with the soft computing approach in 

North-Western Africa and across the globe. This review paper distinctively provided 

reliable outcome for various approaches (empirical and soft computing model). The 

regression models regarded as capable and convenient for hourly, daily and monthly 

estimation are clearness index-based models, sunshine-base models, cloud cover-based 

models, extraterrestrial solar radiation-based models, monthly-based models and hybrid 

parameter-based model. A number of important aspects identified in literature as well as 

shortcomings with solutions recommended in the present study are summed up 

subsequently. 

In the light of presented review literature, it seems that a number of sites do not 

have meteorological stations, whereby empirical and soft computing models should be 

developed employing attitude, latitude, longitude, solar declination angle, and 

extraterrestrial solar radiation inputs for precise measurement as they require no 

experimental measurement to obtain their values. Soft computing models have newly been 

initiated for predicting renewable energy resources, but additional work is needed to 

enhance solar radiation prediction accuracy pertaining to various seasons, climate change 

and poor weather, on different surfaces, (e.g., tiled) Nwokolo and Ogbulezie [9]. Hence, 

according to the authors, the greatest advantages may be needed from natural resources to 

supply increasingly reliable efficient solar systems in the market. 
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Fig. 5. Scatter plots of the measured versus the estimated daily diffuse solar radiation at (a) 
Beijing and (b) Zhengzhou of North China Plain by Feng et al. [12]. 
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Fig. 6. Performance of the ANFIS model to predict Hd using optimal combination of 3 inputs for: 
(a) training dataset and (b) checking dataset Mohammadi et al. [16]. 

 

 
Fig. 7. Scatter plots of them ensured diffuse solar radiation versus predictions of (a) SVM–WT, 
(b) SVM–RBF, (c) ANN and (d) empirical model for the testing data set (Shamshirband et al. [81]) 
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Fig. 8. Classification of diffuse solar radiation and its associated number of groups, functional forms, and models in Nigeria and Egypt 
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5. Concluding Remarks 
 

The regression models for predicting diffuse solar radiation were investigated 

extensively and its performances were compared with the soft computing approach in 

North-Western Africa and across the globe. This review paper distinctively provided 

reliable outcome for various approaches (regression and soft computing model). The 

regression models are regarded as capable and convenient for hourly, daily and monthly 

estimation are clearness index-based models, sunshine-base models, cloud cover-based 

models, extraterrestrial solar radiation-based models, monthly-based models and hybrid 

parameter-based model. Owing to the inability of regression models to accept many input 

parameters but rather strengthened in its reliability, a number studies in literature revealed 

that soft computing models are more suitable for predicting diffuse solar radiation in 

several locations distributed across the globe. Thus, applying soft computing and even 

power hybrid soft computing models will culminate in the greatest understanding of 

availability diffuse solar radiation in a particular region or location that is needful for 

supplying increasingly reliable efficient solar systems in the market. 
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