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A good working knowledge of photosynthetically active radiation (PAR) is 
of vital requirement for determining the terrestrial photosynthesis, primary 
productivity calculation, ecosystem-atmosphere carbon dioxide, plant 
physiology, biomass production, natural illumination in greenhouses, 
radiation climate, remote sensing of vegetation, and radiation regimes of 
plant canopy, photosynthesis, productivity models of vegetation, etc. 
However, routine measurement of PAR is not available in most location of 
interest across the globe. During the past 77 years in order to estimate 
PAR on hourly, daily and monthly mean basis, several empirical models 
have been developed for numerous locations globally. As a result, 
numerous input parameters have been utilized and different functional 
forms applied. This study was aim at classifying and reviewing the 
empirical models employed for estimating PAR across the globe. The 
empirical models so far utilized were classified into ten main categories 
and presented base on the input parameters applied. The models were 
further reclassified into numerous main sub-classes (groups) and finally 
presented according to their developing year. In general, 757 empirical 
models, 62 functional forms and 32 groups were reported in literature for 
estimating PAR across the globe. The empirical models utilized were 
equally compared with models developed using different artificial neural 
network (ANN); and the result revealed that ANN models are more suitable 
for estimating PAR across the globe. Thus, this review would provide solar 
energy researchers with input parameters and functional forms that have 
been widely used to up to date, and recognizing their importance in 
estimating PAR globally.  
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1. Introduction  
  

 Photosynthetically active radiation (PAR) is a component of global solar radiation 

(H) that covers both photon and energy terms between 400-700 nm waveband incident per 

unit time on a unit surface. This radiometric flux (PAR) is both photon and energy term 

capable for driving electron transport within the photosynthetic process used by plants in 

synthesizing their food as shown by the chemical equation given by Nwokolo [1] and 

Nwokolo and Ogbuezie [2]: 
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                             (1) 

where the light (PAR) represents light energy wavelength range (400-700 nm) that is the 

best fit for photosynthesis to occur. 

PAR is not only important for single plant leaves, plant communities and modeling 

vegetation growing due to its relationship with botanical photosynthesis process but a 

viable irradiance energy needed as a baseline for estimating and understanding PAR 

parameters such as gross primary productivity (GPP), light use efficiency (LUE) and net 

ecosystem exchange of carbon dioxide (NEE) for agricultural and ecological studies, etc.  

The accurate determination and clear understanding of PAR is needed for many 

applications such as analyzing terrestrial photosynthesis, primary productivity calculation 

and ecosystem-atmosphere carbon dioxide [3,4]; plant physiology, biomass production and 

natural illumination in greenhouses [5]; comprehensive studies of radiation climate, remote 

sensing of vegetation, radiation regimes of plant canopy, photosynthesis and productivity 

models of vegetation [6]; carbon dynamic, agricultural productivity, and atmospheric 

Physics [7-9]; terrestrial photosynthesis modeling [10-12]; radiation forcing effect, energy 

management, hydrological process and biometeorology [13-14]; studies of crop 

production, remote sensing of vegetation and carbon cycle modeling [15-16]; evolution of 

environmental and agricultural fields [17]; agriculture, atmospheric physics, forestry, 

ecology, energy management and photon science [18-19]; plant physiology, crop growth, 

biomass production and agricultural meteorology [20-21]; controlling the exchange of 

carbon between atmosphere, oceans and the terrestrial biosphere [22-25]; radiation 

intercepted by the canopy, the establishment of leaf photosynthesis and the productivity of 

agricultural crops and forests [26-27]; and calculating the euphotic depth in the ocean [28].   

PAR as a component of solar radiation spectrum is extremely important because it 

is the solar energy source for vegetative photosynthesis to provide mankind with products 

such as food and fiber sources, biofuels carriers and additional materials sources that 

support industrial process. PAR also plays significant roles in plant growth, and it is the 

principal factor in the rate of solar energy conversion into biological mediated energy. 

Therefore, PAR is an indispensable atmospheric radiometric flux nature needed for 

balance distribution of varieties of plants and perfecting the ecosystem in the horizons 

across different climatic and geographical regions of the world. The oxygen (O2) needed 

by man for respiration is powered by PAR. Thus, the study of PAR is a necessity for 

understanding how plants, animals and mankind interact and relate with its immediate 

ecosystem. 

Measurement of PAR have been performed in many parts of the world using a 

variety of instrument such as Eppley precision spectral pyrometer (PSP) and PAR lite. 

Apart from these radiometric flux instruments, quantum sensor often used for PAR 

measurement have problems, such as cosine errors, spectral errors, and the lack of a 

standard absolute PAR value [29-31]. 

As a result of cost of measuring equipment, its maintenance and calibration 

requirements, in rural and developing countries in Africa and several places around the 
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world, a worldwide routine network for the measurement of PAR on like global solar 

radiation is not yet established. In order to correct these anomalies, different empirical 

models have been developed [32-34], few of them using satellite data [22, 35]. In another 

technique, PAR is commonly estimated as a constant ratio of the global solar radiation (H).  

Numerous authors have studied this ratio [36-43]. 

Therefore, empirical models that estimate PAR based on global solar radiation (H) 

are important and are classified into two types. One employed the constant ratio of the 

global solar radiation (PAR/H). Depending on weather PAR is expressed in energy units 

(PARe Wm-2, MJm-2 etc.) or photon units (PARP, E/mJ, µEm-2S-1 etc.), there are two types 

of ratios: 

H

e
PAR

(unitless)          (2) 

H

p
PAR

(Unit: µmolJ-1, E/mJ, µEm-2S-1 etc.)      (3) 

 

According to Walczak et al. [44], since the photosynthetic efficiency of green 

plants is directly proportional to the number of photons absorbed in the spectral range (400-

700nm) and not to their energy, therefore, it is more convenient to express PAR using 

photon number e.g. µEm-2S-1 (quanta mol-1s-1 or µmol-1s-1) than radiant energy (Wm-2, 

MJm-2). 

In addition to the above mentioned ratio, the following conversion ratio has been 

employed [4, 45-46]: 

e
PAR

p
PAR

(Unit: µmolJ-1, E/mJ, µEm-2S-1 etc.)      (4) 

McCree [45] recorded the value of ePAR
p

PAR as 4.57 µmolJ-1. Assuming this value 

to be constant, many studies [47-48] have applied it. However, Jacovides et al. [46] and 

Dye [4] reported slightly different values – 4.53 µmolJ-1 and 4.56 µmolJ-1, respectively. 

Although these values are quite similar, the influence of ePAR
p

PAR on climatic conditions 

is not well documented. As a result, Akitsu et al. [49] observed that ePAR
p

PAR may change 

within 3 % around McCree’s constant value (4.57 µmolJ-1) in response to changes in water 

vapour pressure, solar zenith angle and clearness index. Thus, Akitsu et al. [49] 

recommended the use of McCree’s value as it have been accepted by numerous researchers, 

though the ratio is not strictly constant. 

However, numerous researchers have observed that PAR ratio varied according to 

location [48]; seasons [43, 50]; sky conditions [51-53]; sky clearness, sky brightness and 

atmospheric depth for the solar beam [54-55]; relative sunshine duration and water vapour 

pressure [50, 55]; altitude [56]; irradiance intensity [57]; day length [57-58]; Ozone and 

other atmospheric gases [53, 58-59]; relative humidity [60], minimum and maximum 

temperature [61]; optical air mass [62-64]; cloud amount and turbidity [55]; global solar 

radiation [41, 65-67]; clearness index [48, 68-73]; site, season, local time and weather 

conditions [49]. Thus, each ratio remains incompletely understood as to how it varies with 
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climatic factors such as water vapour pressure (WVP); solar zenith angle (ϴ) and sky 

cloudiness. Therefore, it is practically difficult to assume reasonable values of these ratio 

at specific sites and in specific seasons. 

For these reasons, numerous studies have employed meteorological parameters, 

geographical parameters, geometrical factors and astronomical parameters as a single 

variable or combine parameters to relate with PAR, PAR/H, PAR fraction (PAR/PARo) or 

PAR coefficient (PAR/Ho) etc. (where Ho and PARo are the extraterrestrial solar radiation 

and extraterrestrial PAR respectively) for their estimation [41, 50, 55,61-62, 64-67, 74]. 

However, solar radiation components have been estimated using different artificial 

neural network (ANN) techniques in recent decades which constitute a widely accepted 

method offering an alternative way to synthesize complex problems associated with solar 

energy estimation such as applying only calculable atmospheric, meteorological, 

astronomical, geographical, geometrical parameters such as extraterrestrial solar radiation, 

latitude, altitude, longitude, maximum sunshine duration, azimuth angle, solar declination, 

cosine of solar zenith angle, and hour angle to estimate PAR. The capacity of ANN 

technique to accept many input parameters for a particular model which is not possible 

applying empirical technique that strengthened its reliability is one of highest discoveries 

and attainment of solar energy researchers in recent times. Moreover, the technique of 

applying ANN models compared to conventional techniques according to recent studies 

[75-77] have offer greater accuracy with estimation error in a range (less than 20 %) and 

could be very good in terms of PAR estimation as much more ANN and other soft 

computing approaches are demanding in the domain of renewable energy resource 

estimation. 

Therefore, the main purpose of the study was to review empirical models fitted in 

literature for estimating PAR at numerous geographical locations distributed around the 

globe and its objectives are identifying several input parameters and functional forms ever 

applied for estimating PAR across the globe; classify the empirical models commonly 

employed across the globe according to the main input parameters; compare the 

performance of empirical and ANN computing models applied and decide the best 

technique that can yield high accuracies of estimation for future purposes and finally 

identify the research gap. 

Thus, this review would be helpful to solar energy researchers to identify and 

determine to a large extent the numerous utilized input parameters and functional forms 

with their corresponding categories ever applied for estimating PAR across the globe and 

also recognize their significance. 

 

 
2. Model Parameters 
 

Basic parameters such as maximum sunshine duration, daily and hourly 

extraterrestrial solar radiation on the horizontal surfaces, hourly and daily PAR, standard 

atmospheric pressure at sea level (1013 hPa), solar constant, zenith angle, clearness of the 

sky (ε), and brightness of the skylight (Δ) are significant for the models employed in this 
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review for estimating PAR. The maximum sunshine duration is expressed mathematically 

as: 

  tantancos
15

2 1 −= −

oS         (5) 

( )







 +
=

365

284360
sin45.23

n
         (6) 

where  is the latitude,   is the solar declination given by Yaniktepe and Genc [78] and n 

the number of days of the year starting from first January. The daily extraterrestrial solar 

radiation is the solar radiation intercepted by horizontal surface during a day without the 

atmosphere and hourly extraterrestrial radiation has similar definition. 

Hourly extraterrestrial solar radiation on the horizontal surface is given by Zhang 

et al. [79] as: 
















 −
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= 


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
sinsin

180

)12(
sin)1sin2(sincoscos

365

360
cos033.01

360012

S

nSCI

oI  (7) 

While the daily extraterrestrial solar radiation on the horizontal surface is given by 

Yaniktepe and Genc [78] as: 






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

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
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


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
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
sinsin

360
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sincoscos

365

360
cos033.01

24 S
S

n

SCIoH    (8) 

Where the mean sunrise hour angle ( )s   can be evaluated as:  

  tantancos 1 −= −

s         (9) 

ISC is the solar constant, 1 and 2 are the limit hour angle of an hour, in which 2  is the 

larger, all in degrees and other symbols retain their usual meaning. 

Hourly extraterrestrial PAR flux (PARo) according to Frouin and Pinker [15] and 

Hu et al. [80] can be estimated from extraterrestrial solar radiation (Ho), with a fraction of 

0.5. Therefore, hourly and daily PARo can be calculated by multiplying the ratio 4.57 of 

the energy flux density to photosynthetic photon flux density as suggested by Dye [4]. 

Thus, the hourly PARo can be expressed as:  

 ( )oIoPAR 57.45.0 =          (10) 

And daily PARo can be calculated as: 

( )oHoPAR 57.45.0 =          (11) 

The sky clearness (ε) and brightness of the skylight (Δ) can be evaluated as proposed by 

Wang et al. [71]: 

d
H

b
H

d
H +

=           (12) 

( )cos
b

H

d
H

=           (13) 

The cosine of sun zenith angle ( ) is expressed as: 

( ) ( ) sinsincoscoscoscos +=        (14) 
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While the relative optical mass ( )m  can be calculated as proposed by Wang et al. [71]: 

( ) ( ) 253.1
885.9315.0cos

1

−
−+

=


m        (15) 

Where 
d

H  and 
b

H are the diffuse and direct radiation on the earth horizontal surface and 

other symbols retain their usual meaning.  

 

 

3. Evaluation Metrics 
 

Evaluation, principally, compares how good the observed and estimated fit each 

other. This evaluation is applied at numerous steps of the computing model development 

as for instance during the evaluation of the estimation model itself (during the training of 

a statistical model for instance), for judging the improvement of the computing model after 

some modifications and for comparing numerous computing models. As previously 

mentioned, this performance comparison is not easy for numerous reasons such as different 

estimated time horizons, numerous time scale of the estimated data and variability of the 

meteorological conditions from one site to another one. It works by comparing the 

estimated outputs 𝑦̂) with observed data y which are also measured data themselves linked 

to an error (or precision) of a measure. 

Graphic tools are available for estimating the adequacy of the computing model 

with the experimental measurements via: 

1. Time series of estimated global radiation in comparison with measured global 

radiation which allows to visualize easily the prediction quality. In Fig. 1a, for 

instance, a high estimate accuracy in clear-sky conditions and a low one in partly 

cloudy conditions can be seen. 

2. Scatter plots of estimated over measured global radiation (as shown in Fig. 1b) 

which can reveal systematic bias and deviations depending on the global radiation 

conditions and show the range of deviations that are related to the estimates.  

3. Receiver Operating Characteristic (ROC) curves which compare the rates of true 

positives and false positive.  
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Figure 1: a) Time series of predicted and measured global radiation for 2008 in Ajaccio (France); b) Scatter 

plot of predicted vs. measured global radiation in Ajaccio (France); c) Example of ROC curve (an ideal ROC 

curve is near the upper left corner) Lauret et al. [81]. 

 

Up till now, there is no standard evaluation measures accepted for 

photosynthetically active radiation measurement, which makes the comparison of the 

estimating methods difficult. Sperati et al. [82] presented a benchmarking exercise within 

the framework of the European Actions Weather Intelligence for Renewable Energies 

(WIRE) with the purpose of evaluating the performance of state of the art computing 

models for short term renewable energy estimation or forecasting. This research is a very 

good example of reliability parameter utilization. They concluded that: “More work using 

more test cases, data and computing models needs to be performed in order to achieve a 

global overview of all possible conditions. They also pointed out that test cases located all 

over Europe, the US and other relevant countries should be considered, in an effort to 

represent most of the possible meteorological conditions”. This study therefore illustrates 

very well the difficulties of performance comparisons encountered for photosynthetically 

active radiation estimation. 

The commonly applied statistics for photosynthetically active radiation estimation 

include the following: 

The mean bias error (MBE) represents the mean bias of the estimation: 

( ) ( )( )
=

−=
N

i
iyiy

N
MBE

1
ˆ

1
       (16) 

  

a) 
b) 

c) 
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with 𝑦̂  is the estimated photosynthetically active radiation, y the measured 

photosynthetically active radiation and N the number of observations. The estimation will 

under-estimate or over-estimate the observations. Thus, MBE is not a good statistical 

indicator for the relatability of a computing model because the errors compensate each 

other but it allows to see how much it overestimates or underestimates. 

 The mean absolute error (MAE) is appropriate for comparing photosynthetically 

active radiation estimation with linear cost functions, i.e., where the costs resulting from a 

poor estimation are proportional to the estimation error: 

     ( ) ( )
=

−=
N

i
iyiy

N
MAE

1
ˆ

1
                    (17) 

 

 The mean square error (MSE) applies the squared of the difference between 

observed and predicted data. This statistical indicator penalizes the highest gaps: 

    ( ) ( )( )
=

−=
N

i
iyiy

N
MSE

1

2
ˆ

1
        (18) 

MSE is principally the statistical parameter which is minimized by the training algorithm.  

The root mean square error (RMSE) is more sensitive to big estimation errors, and 

thus is good for applications where small errors are more tolerable and larger errors cause 

disproportionately high costs, as in the case of utility applications [83]. It is probably the 

reliability parameter that is most appreciated and employed: 

( ) ( )( )
=

−==
N

i
iyiy

N
MSERMSE

1

2
ˆ

1
                    (19) 

 The mean absolute percentage error (MAPE) is close to the MAE but each gap 

between observed and predicted value is divided by the observed value so as to consider 

the relative gap. 

( ) ( )

=

−
=

N

i iy

iyiy

N
MAPE

1 )(

ˆ1
                    (20) 

This statistical indicator has a challenge that it is unstable when y(i) is near zero and it 

cannot be defined for y(i)=0. 

Of recent, these errors are normalized particularly for the RMSE; as reference the 

mean value of global radiation is generally employed but other definitions can be applied:  

( ) ( )( )

y

N

i
iyiy

N
nRMSE


=

−

=
1

2
ˆ

1

        (21) 

with 𝑦̅ is the mean value of y. Other statistical indicators exist and can be employed as the 

correlation coefficient (R), coefficient of determination (R2), or the index of agreement (d) 

which are normalized between 0 and 1. 

 As the estimation accuracy strongly depends on the location and time period 

applied for evaluation and on other parameters, it is difficult to evaluate the quality of an 

estimation from accuracy metrics alone. Then, it is the best to compare the accuracy of 

different estimations against a common set of test data Pelland et al. [84]. “Trivial” 

estimation approach can be applied as a reference [83], the most common one is the 
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persistence model (“things stay the same”, Trapero et al. [85] where the estimation is 

always equal to the last known data point. The photosynthetically active radiation has a 

deterministic component due to the geometrical path of the sun. This characteristic may be 

included as a constraint to the simplest form of persistence in considering as an example, 

the measured data of the previous day or the previous hour at the same time as an estimation 

value. Other common reference forecasts include those based on climate constants and 

simple autoregressive methods. Such comparison with referenced NWP computing model 

is shown in Figure 2. Generally, after 1 hour the forecast is better than persistence. For 

forecast horizons of more than two days, climate averages show lower errors and should 

be preferred for photosynthetically active radiation estimation.  

 

 
Figure 2: Relative RMSE of forecasts (persistence, auto regression, and scaled persistence) and of reference 

models depending on the forecast horizon Lauret et al. [81]. 
 

Classically, a comparison of performance is performed with a reference computing 

model and to do it, a skill factor is employed. The skill factor or skill score defines the 

difference between the forecast and the reference forecast normalized by the difference 

between a perfect and the reference forecast Lauret et al. [81]: 

reference
MSE

forecatd
MSE

reference
Metric

castperfectfoe
Metric

reference
Metric

forecasted
Metric

SkillScore −=
−

−

= 1     (22) 

Its value thus ranges between 1 (perfect forecast) and 0 (reference forecast). A negative 

value indicates a performance which is even worse compared to the reference (observed 

data). Skill scores can be adopted not only for comparison between observed and estimated 

PAR values but also for inter-comparisons of different photosynthetically active radiation 

estimation techniques. 
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4. Empirical Models 
 

An empirical model correlates PAR, PAR/H, PAR/PARo and PAR/Ho with other 

easily measureable and calculable parameters such as clearness index, global solar 

radiation, relative humidity, minimum and maximum temperature, optical air mass, cloud 

amount, water vapour pressure, turbidity, sunshine duration and combination of the above 

parameters by employing concise mathematical functions. Numerous empirical models 

have been reported in literature for estimating PAR on the horizontal surface either on 

hourly mean basis (HB) or daily mean basis (DB) or monthly mean daily basis (MB) across 

the globe. In this review, the PAR models are classified according to the basis of their input 

parameters applied in correlating with PAR, PAR/H, PAR/PARo and PAR/Ho. it has been 

established that PAR is relatively influenced by meteorological parameters, astronomical 

factors, geographical factors, and geometrical factors. This could be attributed to the 

uniqueness of local climate in determining the atmospheric and meteorological parameters 

that best fit that particular locality. This also depends on the availability of input 

meteorological/atmospheric parameters that a given radiometric station or an individual is 

capable of measuring or calculating routinely which finally turned out to be the best input 

parameter at the disposal of the researcher for estimating PAR in that locality. Thus, in this 

review, the empirical models for estimating PAR can be classified into ten (10) following 

categories based on the applied meteorological and atmospheric parameters via: 

1. Global solar radiation-based models 

2. Relative humidity-based models 

3. Temperature-based models 

4. Optical air mass-based models 

5. Cloud amount-based models 

6. Water vapour pressure-based models 

7. Turbidity-based models 

8. Sunshine duration-based models 

9. Clearness index-based models 

10. Hybrid parameter-based models 

 

4.1 Global Solar Radiation-Based Models 
 Since PAR is a component of global solar radiation (H) on the horizontal surface, 

solar radiation researcher applied it for estimating PAR and the ratio of PAR/H as a result 

of its great important and influence for determining the PAR striking a particular location 

at the top of the atmosphere and its comprehensive impact on PAR on the horizontal 

surface. Thus, the functional forms and models employed across the globe are presented in 

this section.  

 

4.1.1 Group 1 

  

 Empirical models from this group are parameterized as the ratio of 

photosynthetically active radiation ( )p
PAR  to global solar radiation ( )H  expressed in photon 
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units (µmolJ-1, E MJ-1 etc.) according to their developing year. The functional form is given 

as: 

( )Ha
p

PAR =           (23) 

Where a is the regression coefficient 

McCree [36] developed the following MB model for New Zealand as: 

( )H
p

PAR 70.2=          (24) 

Monteith [86] developed the following DB model for the tropics under clear sky 

as: 

( )H
p

PAR 23.2=          (25) 

Szeicz [57] proposed the following DB model from January-December for 

Cambridge, UK as: 

( )H
p

PAR 33.2=          (26) 

Britton and Dodd [56] developed the following DB model for January-December 

in College Station, TX, USA as:  

 ( )H
p

PAR 17.2=          (27) 

Hodges and Kanemasu [87] proposed the following DB model for Manhattan, 

Kanas as: 

( )H
p

PAR 17.2=          (28) 

Stanhill and Fuchs [88] obtained the following HB models for numerous locations. 

For Rockeville, MD, USA (January-December) 

( )H
p

PAR 24.2=          (29a) 

For Washington DC (January-December) 

( )H
p

PAR 23.2=          (29b) 

For Jerusalem, Isreal (January-December) 

( )H
p

PAR 19.2=          (29c) 

For Dar es Salaan, Tanzania (October-January) 

( )H
p

PAR 33.2=          (29d) 

For Washington, Rockville and Jerusalem 

( )H
p

PAR 24.2=          (29e) 

Arkin et al. [89] stimulated the following DB model for Temple, Texas as: 

( )H
p

PAR 89.2=          (30) 

Hodges et al. [90] reported the following DB model for Manhattan, Kanas as: 

( )H
p

PAR 55.2=          (31) 

Howell et al. [91] proposed the following DB models for University of California 

USA as: 

( )H
p

PAR 058.2=          (32) 

Kvifte et al. [92] established the following DB models for several locations as 

follows: 
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For Copenhagen, Denmark 

( )H
p

PAR 239.2=          (33a) 

For Aas, Norway 

( )H
p

PAR 194.2=          (33b) 

For Ultuna, Sweden (May-October) 

( )H
p

PAR 102.2=          (33c) 

For Reykjavik, Iceland (May-October) 

( )H
p

PAR 102.2=          (33d) 

For Sodankyla, Finland (May-October) 

( )H
p

PAR 194.2=          (33e) 

For Tromso, Norway (May-October) 

( )H
p

PAR 056.2=          (33f) 

Rodskjer [93] established the following DB model for Ultuna, Sweden as: 

( )H
p

PAR 125.2=          (34) 

Meek et al. [41] obtained the following MB mo   (42m) 

Finch et al. [43] obtained thee following DB models under various sky conditions 

for Lusaka, Zambia as follows: 

For clear sky 

( )H
p

PAR 914.1=          (43a) 

For cloudy sky 

( )H
p

PAR 111.2=          (43b) 

Wang et al. [54] reported the following MB model for Naeba Mountain in China 

as: 

( )H
p

PAR 94.1=          (43c)  

Wang et al. [71] recorded the following MB models in Wuhan, China 

For January 

( )H
p

PAR 70.1=          (44a) 

For February  

( )H
p

PAR 73.1=          (44b) 

For March 

( )H
p

PAR 78.1=          (44c) 

For April 

( )H
p

PAR 87.1=          (44d) 

For May 

( )H
p

PAR 92.1=          (44e) 

For June 
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( )H
p

PAR 97.1=          (44f) 

For July 

( )H
p

PAR 00.2=          (44g) 

For August 

( )H
p

PAR 06.2=          (44h) 

For September 

( )H
p

PAR 96.1=          (44i) 

For October 

( )H
p

PAR 92.1=          (44j) 

For November 

( )H
p

PAR 83.1=          (44k) 

For December 

( )H
p

PAR 75.1=          (44L) 

For January-December 

( )H
p

PAR 93.1=          (44m) 

For Dry Seasons 

( )H
p

PAR 78.1=          (44n) 

For Humid season 

( )H
p

PAR 95.1=          (44o) 

For clear sky 

( )H
p

PAR 78.1=          (44p) 

For intermediate 

( )H
p

PAR 94.1=          (44q) 

For cloudy 

( )H
p

PAR 01.2=          (44r) 

Wang et al. [98] reported the following MB models for Wuhan in Central China. 

For January 

( )H
p

PAR 81.1=          (45a) 

For July 

( )H
p

PAR 0.2=          (45b) 

For December 

( )H
p

PAR 83.1=          (45c) 

For January-December 

( )H
p

PAR 90.1=          (45d) 

Anjorin et al. [99] fitted the following HB models for Jos, Nigeria as follows: 
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For January 

( )H
p

PAR 92.1=          (46a) 

For February 

( )H
p

PAR 06.2=          (46b) 

For March 

( )H
p

PAR 10.2=          (46c) 

For April 

( )H
p

PAR 14.2=          (46d) 

For May 

( )H
p

PAR 15.2=          (46e) 

For June 

( )H
p

PAR 14.2=          (46f) 

For July 

( )H
p

PAR 11.2=          (46g) 

For August 

( )H
p

PAR 09.2=          (46h) 

For September 

( )H
p

PAR 11.2=          (46i) 

For October 

( )H
p

PAR 13.2=          (46j) 

For November 

( )H
p

PAR 06.2=          (46k) 

For December 

( )H
p

PAR 96.1=          (46L) 

For January-December 

( )H
p

PAR 08.2=          (46m) 

Hu and Wang [62] estimated the following MB models for Sangjiang, Hailun and 

Changbai Mountain in Northeast China. 

For Sangjiang 

For January 

( )H
p

PAR 83.1=          (47a) 

For February  

( )H
p

PAR 82.1=          (47b) 

For March 

( )H
p

PAR 83.1=          (47c) 
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For April 

( )H
p

PAR 89.1=          (47d) 

For May 

( )H
p

PAR 97.1=          (47e) 

For June 

( )H
p

PAR 99.1=          (47f) 

For July 

( )H
p

PAR 01.2=          (47g) 

For August 

( )H
p

PAR 97.1=          (47h) 

For September 

( )H
p

PAR 96.1=          (47i) 

For October1 

( )H
p

PAR 91.1=          (47j) 

For November 

( )H
p

PAR 85.1=          (47k) 

For December 

( )H
p

PAR 86.1=          (47L) 

For HB 

( )H
p

PAR 81.1=          (47m) 

For Hailun 

For January 

( )H
p

PAR 73.1=          (47n) 

For February  

( )H
p

PAR 74.1=          (47o) 

For March 

( )H
p

PAR 79.1=          (47p) 

For April 

( )H
p

PAR 93.1=          (47q) 

For May 

( )H
p

PAR 92.1=          (47r) 

For June 

( )H
p

PAR 98.1=          (47s) 

For July 

( )H
p

PAR 00.2=          (47t) 
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For August 

( )H
p

PAR 93.1=          (47u) 

For September 

( )H
p

PAR 87.1=          (47v) 

For October 

( )H
p

PAR 92.1=          (47w) 

For November 

( )H
p

PAR 84.1=          (47x) 

For December 

( )H
p

PAR 81.1=            (47y) 

For Changbai Mountain 

For January 

( )H
p

PAR 84.1=          (47z) 

For February  

( )H
p

PAR 89.1=          (47aa) 

For March 

( )H
p

PAR 90.1=          (47ab) 

For April 

( )H
p

PAR 01.2=          (47ac) 

For May 

( )H
p

PAR 01.2=          (47ad) 

For June 

( )H
p

PAR 04.2=          (47ae) 

For July 

( )H
p

PAR 04.2=          (47af) 

For August 

( )H
p

PAR 01.2=          (47ag) 

For September 

( )H
p

PAR 98.1=          (47ah) 

For October 

( )H
p

PAR 93.1=          (47ai) 

For November 

( )H
p

PAR 92.1=          (47aj) 

For December 

( )H
p

PAR 92.1=          (47ak) 
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Pankoew et al. [100] obtained the following HB model across UK using MSG 

SEVIRI data as: 

( )H
p

PAR 9455.1=          (48) 

Wang et al. [63] obtained the following HB and DB models for Inner Mongolia, 

China from 1990 to 2012 

Hourly basis (HB) 

For January 

( )H
p

PAR 78.1=          (49a) 

For February  

( )H
p

PAR 84.1=          (49b) 

For March 

( )H
p

PAR 80.1=          (49c) 

For April 

( )H
p

PAR 74.1=          (49d) 

For May 

( )H
p

PAR 76.1=          (49e) 

For June 

( )H
p

PAR 83.1=          (49f) 

For July 

( )H
p

PAR 86.1=          (49g) 

For August 

( )H
p

PAR 89.1=          (49h) 

For September 

( )H
p

PAR 88.1=          (49i) 

For October 

( )H
p

PAR 87.1=          (49j) 

For November 

( )H
p

PAR 80.1=          (49k) 

For December 

( )H
p

PAR 69.1=          (49L) 

For January-December 

( )H
p

PAR 80.1=          (49m) 

Daily basis (DB) 

For January 

( )H
p

PAR 73.1=          (49n) 

For February  
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( )H
p

PAR 79.1=          (49o) 

For March 

( )H
p

PAR 79.1=          (49p) 

For April 

( )H
p

PAR 70.1=          (49q) 

For May 

( )H
p

PAR 76.1=          (49r) 

For June 

( )H
p

PAR 83.1=          (49s) 

For July 

( )H
p

PAR 86.1=          (49t) 

For August 

( )H
p

PAR 89.1=          (49u) 

For September 

( )H
p

PAR 88.1=          (49v) 

For October 

( )H
p

PAR 85.1=          (49w) 

For November 

( )H
p

PAR 80.1=          (49x) 

For December 

( )H
p

PAR 68.1=          (49y) 

For January-December 

( )H
p

PAR 80.1=          (49z) 

Akitsu et al. [49] stimulated the following MB models for Tsukuba, Japan. 

For Summer period (a wet season): 

( )H
p

PAR 12.2=          (50a) 

For Winter (a dry season) 

( )H
p

PAR 92.1=          (50b) 

Peng et al. [101] proposed the following MB models for Lhasa located on the 

Tibetan Plateau in China as follows: 

For January 

( )H
p

PAR 81.1=          (51a) 

For July 

( )H
p

PAR 0.2=          (51b) 

For December 
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( )H
p

PAR 83.1=          (51c) 

For January-December 

( )H
p

PAR 84.1=          (51d) 

Hu et al. [64] fitted the following HB models for several stations in Beijing site as 

follows: 

For Beijing 

( )H
p

PAR 88.1=          (52a) 

For Luancheng 

( )H
p

PAR 80.1=          (52b) 

For Yuchen 

( )H
p

PAR 87.1=          (52c) 

For Jiaozhouwan 

( )H
p

PAR 95.1=          (52d) 

For Changwu 

( )H
p

PAR 89.1=          (52e) 

For Fengqin 

( )H
p

PAR 85.1=          (52f) 

Nwokolo and Ogbulezie [70] calibrated the following MB models for several 

locations in Nigeria.  

Gusau 

For January 

( )H
p

PAR 921.1=           (53a) 

For February  

( )H
p

PAR 908.1=          (53b) 

For March 

( )H
p

PAR 923.1=          (53c) 

For April 

( )H
p

PAR 933.1=          (53d) 

For May 

( )H
p

PAR 968.1=          (53e) 

For June 

( )H
p

PAR 954.1=          (53f) 

For July 

( )H
p

PAR 984.1=          (53g) 

For August 
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( )H
p

PAR 982.1=          (53h) 

For September 

( )H
p

PAR 946.1=          (53i) 

For October 

( )H
p

PAR 928.1=          (53j) 

For November 

( )H
p

PAR 890.1=          (53k) 

For December 

( )H
p

PAR 889.1=          (53l) 

For January-December 

( )H
p

PAR 936.1=          (53m) 

For Rainy Seasons 

( )H
p

PAR 956.1=          (53n) 

For Dry season 

( )H
p

PAR 909.1=          (53o) 

Port Harcourt  

For January 

( )H
p

PAR 950.1=           (53p) 

For February  

( )H
p

PAR 955.1=          (53q) 

For March 

( )H
p

PAR 980.1=          (53r) 

For April 

( )H
p

PAR 987.1=          (53s) 

For May 

( )H
p

PAR 010.2=          (53t) 

For June 

( )H
p

PAR 052.2=          (53u) 

For July 

( )H
p

PAR 060.2=          (53v) 

For August 

( )H
p

PAR 044.2=          (53w) 

For September 

( )H
p

PAR 054.2=          (53x) 

For October 
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( )H
p

PAR 038.2=          (53y) 

For November 

( )H
p

PAR 999.1=          (53z) 

For December 

( )H
p

PAR 960.1=          (53aa) 

For January-December 

( )H
p

PAR 007.2=          (53ab) 

For Rainy Seasons 

( )H
p

PAR 027.2=          (53ac) 

For Dry season 

( )H
p

PAR 980.1=          (53ad) 

Enugu 

For January 

( )H
p

PAR 985.1=          (53ae)   

For February  

( )H
p

PAR 973.1=          (53af) 

For March 

( )H
p

PAR 972.1=          (53ag) 

For April 

( )H
p

PAR 961.1=          (53ah) 

For May 

( )H
p

PAR 966.1=          (53ai) 

For June 

( )H
p

PAR 976.1=          (53aj) 

For July 

( )H
p

PAR 003.2=          (53ak) 

For August 

( )H
p

PAR 005.2=          (53aL) 

For September 

( )H
p

PAR 001.2=          (53am) 

For October 

( )H
p

PAR 041.2=          (53an) 

For November 

( )H
p

PAR 971.1=          (53ao) 

For December 
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( )H
p

PAR 977.1=          (53ap) 

For January-December 

( )H
p

PAR 986.1=          (53aq) 

For Rainy Seasons 

( )H
p

PAR 983.1=          (53aw) 

For Dry season 

( )H
p

PAR 989.1=          (53ax) 

Abeokuta 

For January 

( )H
p

PAR 938.1=           (53ay) 

For February  

( )H
p

PAR 936.1=          (53az) 

For March 

( )H
p

PAR 944.1=          (53aaa) 

For April 

( )H
p

PAR 968.1=                    (53aab) 

For May 

( )H
p

PAR 975.1=          (53aac) 

For June 

( )H
p

PAR 997.1=                    (53aad) 

For July 

( )H
p

PAR 025.2=          (53aae) 

For August 

( )H
p

PAR 011.2=          (53aaf) 

For September 

( )H
p

PAR 039.2=                    (53aag) 

For October 

( )H
p

PAR 981.1=                    (53aah) 

For November 

( )H
p

PAR 952.1=          (53aai) 

For December 

( )H
p

PAR 927.1=          (53aaj) 

For January-December 

( )H
p

PAR 975.1=                    (53aak) 

For Rainy Seasons 
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( )H
p

PAR 995.1=                    (53aaL) 

For Dry season 

( )H
p

PAR 947.1=                   (53aam) 

Ilorin 

For January 

( )H
p

PAR 917.1=                     (53aan) 

For February  

( )H
p

PAR 922.1=         (53aao) 

For March 

( )H
p

PAR 923.1=         (53aap) 

For April 

( )H
p

PAR 934.1=         (53aaq) 

For May 

( )H
p

PAR 946.1=         (53aar) 

For June 

( )H
p

PAR 966.1=         (53aas) 

For July 

( )H
p

PAR 989.1=         (53aat) 

For August 

( )H
p

PAR 005.2=         (53aau) 

For September 

( )H
p

PAR 004.2=         (53aav) 

For October 

( )H
p

PAR 946.1=         (53aaw) 

For November 

( )H
p

PAR 918.1=         (53aax) 

For December 

( )H
p

PAR 906.1=         (53aay) 

For January-December 

( )H
p

PAR 943.1=         (53aaz) 

For Rainy Seasons 

( )H
p

PAR 967.1=         (53aaaa) 

For Dry season 

( )H
p

PAR 922.1=         (53aaab) 

Sokoto 
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For January 

( )H
p

PAR 917.1=          (53aaac) 

For February  

( )H
p

PAR 907.1=         (53aaad) 

For March 

( )H
p

PAR 905.1=         (53aaae) 

For April 

( )H
p

PAR 915.1=         (53aaaf) 

For May 

( )H
p

PAR 909.1=         (53aaag) 

For June 

( )H
p

PAR 919.1=         (53aaah) 

For July 

( )H
p

PAR 935.1=         (53aaai) 

For August 

( )H
p

PAR 955.1=         (53aaaj) 

For September 

( )H
p

PAR 934.1=         (53aaak) 

For October 

( )H
p

PAR 926.1=         (53aaaL) 

For November 

( )H
p

PAR 911.1=         (53aaam) 

For December 

( )H
p

PAR 916.1=         (53aaan) 

For January-December 

( )H
p

PAR 921.1=         (53aaao) 

For Rainy Seasons 

( )H
p

PAR 931.1=         (53aaap) 

For Dry season 

( )H
p

PAR 914.1=         (53aaaq) 

 

4.1.2 Group 2 

 Empirical models from this group are parameterized as the ratio of 

photosynthetically active radiation ( )e
PAR  to global solar radiation ( )H  expressed in 

energy (unitless) according to their developing year. The functional form is given as: 
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( )Ha
e

PAR =           (54) 

where a is the regression coefficient 

 

Moon [36] computed spectral distribution of direct sunlight for sea level and 

suggested the ratio of PAR to H as: 

( )H
e

PAR 44.0=          (55) 

Yocum et al. [102] established the following MB model for Ithaca, NY, USA in 

the month of August as: 

( )H
e

PAR 47.0=          (56) 

Williams [103] obtained the following MB model for a wide variety of climatic 

conditions as: 

( )H
e

PAR 45.0=  

Goldberg and Klein [104] fitted the following DB model between January-

December for Jerusalem, Israel and Rockeville, MD, USA. 

For Jerusalem, Israel 

( )H
e

PAR 45.0=          (57a) 

For Rockeville, MD, USA 

( )H
e

PAR 45.0=          (57b) 

Stigter and Musabilha [105] established the following HB models for Dar es 

Salaam, Tanzania under various sky conditions 

For clear sky 

( )H
e

PAR 510.0=          (58a) 

For cloudy sky 

( )H
e

PAR 630.0=          (58b) 

Rao [51] developed the following HB model for Corvallis, Oregon, USA under 

various sky conditions and from January-December. 

For January-December 

( )H
e

PAR 46.0=          (59a) 

For clear sky 

( )H
e

PAR 443.0=          (59b) 

For partially cloudy sky 

( )H
e

PAR 447.0=          (59c) 

For cloudy sky 

( )H
e

PAR 483.0=          (59d) 

Hansen [106] reported the following DB model for Aas, Norway (May-August) as: 

( )H
e

PAR 44.0=          (60) 



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 236-327. doi: 10.17737/tre.2018.4.2.0079 261 

 

 

 

Papaioannou et al. [52] reported the following DB and HB models for Anthens, 

Greece under various sky conditions 

Hourly Basis (HB) 

For clear sky 

( )H
e

PAR 480.0=          (61a) 

For cloudy sky 

( )H
e

PAR 490.0=          (61b) 

Daily Basis (DB) 

For clear sky 

( )H
e

PAR 463.0=          (61c) 

For cloudy sky 

( )H
e

PAR 472.0=          (61d) 

Papaioannou et al. [107] reported the following MB model for Anthens, Greece as: 

( )H
e

PAR 43.0=          (62) 

Zhou et al. [108] fitted the following HB models for Yucheng, China under varying 

local standard time (hours). 

For January, 1992 (08:00) 

( )H
e

PAR 39.0=          (63a) 

For January, 1992 (09:00) 

( )H
e

PAR 42.0=          (63b) 

For January, 1992 (10:00) 

( )H
e

PAR 43.0=          (63c) 

For January, 1992 (11:00) 

( )H
e

PAR 42.0=          (63d) 

For January, 1992 (12:00) 

( )H
e

PAR 43.0=          (63e) 

For January, 1992 (13:00) 

( )H
e

PAR 43.0=          (63f) 

For January, 1992 (14:00) 

( )H
e

PAR 43.0=          (63g) 

For January, 1992 (15:00) 

( )H
e

PAR 42.0=          (63h) 

For January, 1992 (16:00) 

( )H
e

PAR 42.0=          (63i) 

For July, 1991 (07:00) 

( )H
e

PAR 47.0=          (63j) 
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For July, 1991 (08:00)  

( )H
e

PAR 50.0=          (63k) 

For July, 1991 (09:00) 

( )H
e

PAR 51.0=          (63L) 

For July, 1991 (10:00) 

( )H
e

PAR 52.0=          (63m) 

For July, 1991 (11:00) 

( )H
e

PAR 53.0=          (63n) 

For July, 1991 (12:00) 

( )H
e

PAR 51.0=          (63o) 

For July, 1991 (13:00) 

( )H
e

PAR 51.0=          (63p) 

For July, 1991 (14:00) 

( )H
e

PAR 51.0=          (63q) 

For July, 1991 (15:00) 

( )H
e

PAR 52.0=          (63r) 

For July, 1991 (16:00) 

( )H
e

PAR 51.0=          (63s) 

For July, 1991 (17:00) 

( )H
e

PAR 49.0=          (63t) 

For July, 1991 (18:00) 

( )H
e

PAR 45.0=          (63u) 

Jacovides et al. [53] stimulated the following DB and HB models for Athalassa, 

Cyprus under various sky conditions 

Hourly Basis (HB) 

For Cloudy Sky 

( )H
e

PAR 411.0=          (64a) 

For cloudy sky 

( )H
e

PAR 440.0=          (64b) 

Daily Basis (DB) 

For Clear sky 

( )H
e

PAR 408.0=          (64c) 

For intermediate sky 

( )H
e

PAR 421.0=          (64d) 

For Overcast 
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( )H
e

PAR 440.0=          (64e) 

Tsubo and Walker [48] established the following HB and DB models for 

Bloemfontein, South Africa. 

For Daily Basis (DB) 

( )H
e

PAR 48.0=          (65a) 

For Hourly Basis (HB) 

( )H
e

PAR 49.0=          (65b) 

Aguiar et al. [66] proposed the following MB models for Fazenda Noosa Sen hora 

in Rondonia. 

For January 

( )H
e

PAR 48.0=           (66a) 

For February  

( )H
e

PAR 48.0=          (66b) 

For March 

( )H
e

PAR 48.0=          (66c) 

For April 

( )H
e

PAR 47.0=          (66d) 

For May 

( )H
e

PAR 47.0=          (66e) 

For June 

( )H
e

PAR 46.0=          (66f) 

For July 

( )H
e

PAR 46.0=          (66g) 

For August 

( )H
e

PAR 44.0=          (66h) 

For September 

( )H
e

PAR 43.0=          (66i) 

For October 

( )H
e

PAR 46.0=          (66j) 

For November 

( )H
e

PAR 47.0=          (66k) 

For December 

( )H
e

PAR 47.0=          (66L) 

For Dry Season 

( )H
e

PAR 43.0=          (66m) 



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 236-327. doi: 10.17737/tre.2018.4.2.0079 264 

 

 

 

For Rainy Season 

( )H
e

PAR 48.0=          (66n) 

Jacovides et al. [109] developed the following HB models for Athens, Greece under 

various sky conditions 

For clear sky 

( )H
e

PAR 434.0=          (67a) 

For intermediate sky 

( )H
e

PAR 442.0=          (67b) 

For cloudy sky 

( )H
e

PAR 461.0=          (67c) 

Escobedo et al. [110] developed the following DB and HB under various sky 

conditions at Botucatu, Brazil. 

Hourly Basis (HB) 

( )H
e

PAR 501.0=   35.0oHH       (68a) 

( )H
e

PAR 495.0=   55.035.0  oHH      (68b) 

( )H
e

PAR 490.0=   65.055.0  oHH      (68c) 

( )H
e

PAR 489.0=   63.0oHH       (68d) 

( )H
e

PAR 491.0=   10  oHH       (68e) 

For clear sky 

( )H
e

PAR 489.0=          (68f) 

For cloudy sky 

( )H
e

PAR 501.0=          (68g) 

Daily Basis (DB) 

( )H
e

PAR 512.0=   35.0oHH       (68h) 

( )H
e

PAR 496.0=   55.035.0  oHH      (68i) 

( )H
e

PAR 490.0=   65.055.0  oHH      (68j) 

( )H
e

PAR 485.0=   63.0oHH       (68k) 

( )H
e

PAR 489.0=   10  oHH       (68L) 

For clear sky 

( )H
e

PAR 481.0=          (68m) 

For cloudy sky 

( )H
e

PAR 512.0=          (68n) 
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Li et al. [55] stimulated the following HB models for Wuhaoliang site in Northern 

Tibetan Plateau, China under various local standard time (hours). 

For January, 1994-1997 (08:00) 

( )H
e

PAR 50.0=          (69a) 

For January, 1994-1997 (09:00) 

( )H
e

PAR 46.0=          (69b) 

For January, 1994-1997 (10:00) 

( )H
e

PAR 44.0=          (69c) 

For January, 1994-1997 (11:00) 

( )H
e

PAR 43.0=          (69d) 

For January, 1994-1997 (12:00) 

( )H
e

PAR 42.0=          (69e) 

For January, 1994-1997 (13:00) 

( )H
e

PAR 42.0=          (69f) 

For January, 1994-1997 (14:00) 

( )H
e

PAR 41.0=          (69g) 

For January, 1994-1997 (15:00) 

( )H
e

PAR 40.0=          (69h) 

For January, 1994-1997 (16:00) 

( )H
e

PAR 39.0=          (69i) 

For January, 1994-1997 (17:00) 

( )H
e

PAR 49.0=          (69j) 

For July, 1994-1997 (07:00) 

( )H
e

PAR 50.0=           (69k) 

For July, 1994-1997 (08:00)  

( )H
e

PAR 48.0=          (69L) 

For July, 1994-1997 (09:00) 

( )H
e

PAR 46.0=          (69m) 

For July, 1994-1997 (10:00) 

( )H
e

PAR 45.0=          (69n) 

For July, 1994-1997 (11:00) 

( )H
e

PAR 44.0=          (69o) 

For July, 1994-1997 (12:00) 

( )H
e

PAR 43.0=          (69p) 

For July, 1994-1997 (13:00) 
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( )H
e

PAR 43.0=          (69q) 

For July, 1994-1997 (14:00) 

( )H
e

PAR 43.0=          (69r) 

For July, 1994-1997 (15:00) 

( )H
e

PAR 42.0=          (69s) 

For July, 1994-1997 (16:00) 

( )H
e

PAR 41.0=          (69t) 

For July, 1994-1997 (17:00) 

( )H
e

PAR 38.0=          (69u) 

For July, 1994-1997 (18:00) 

( )H
e

PAR 36.0=          (69v) 

Guefeng et al. [111] fitted the following DB model within the Poyang Lake 

National Nature Reserve, China as: 

( )H
e

PAR 45.0=          (70) 

Escobedo et al. [112] fitted the following HB and DB models for Botucatu, Brazil 

Hourly Basis (HB) 

For 2001 

( )H
e

PAR 4896.0=          (71a) 

For 2002 

( )H
e

PAR 4892.0=          (71b) 

For 2003 

( )H
e

PAR 4866.0=          (71c) 

For 2004 

( )H
e

PAR 5000.0=          (71d) 

For 2001-2004 

( )H
e

PAR 491.0=          (71e) 

Daily Basis (DB) 

For 2001 

( )H
e

PAR 4919.0=          (71f) 

For 2002 

( )H
e

PAR 4887.0=          (71g) 

For 2003 

( )H
e

PAR 4893.0=          (71h) 

For 2004 

( )H
e

PAR 4926.0=          (71i) 
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For 2001-2004 

( )H
e

PAR 489.0=          (71j) 

Wang et al. [9] stimulated the following MB models under different sky conditions 

in Wuhan, Central China 

For January 

( )H
e

PAR 3940.0=   35.0oHH       (72a) 

( )H
e

PAR 3787.0=   65.035.0  oHH      (72b) 

( )H
e

PAR 3764.0=   65.0oHH       (72c) 

For February 

( )H
e

PAR 3997.0=   35.0oHH       (72d) 

( )H
e

PAR 3631.0=   65.035.0  oHH      (72e) 

For March 

( )H
e

PAR 3985.0=   35.0oHH       (72f) 

( )H
e

PAR 3751.0=   65.035.0  oHH      (72g) 

( )H
e

PAR 3745.0=   65.0oHH       (72h) 

For April 

( )H
e

PAR 41.0=   35.0oHH       (72i) 

( )H
e

PAR 3848.0=   65.035.0  oHH      (72j) 

( )H
e

PAR 3832.0=   65.0oHH       (72k) 

For May 

( )H
e

PAR 4156.0=   35.0oHH       (72L) 

( )H
e

PAR 3919.0=   65.035.0  oHH      (72m) 

( )H
e

PAR 3877.0=   65.0oHH       (72n) 

For June 

( )H
e

PAR 4217.0=   35.0oHH       (72o) 

( )H
e

PAR 3947.0=   65.035.0  oHH      (72p) 

For July 

( )H
e

PAR 4377.0=   35.0oHH       (72q) 

( )H
e

PAR 4114.0=   65.035.0  oHH      (72r) 

( )H
e

PAR 4011.0=   65.0oHH       (72s) 

For August 
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( )H
e

PAR 4236.0=   35.0oHH       (72t) 

( )H
e

PAR 4107.0=   65.035.0  oHH      (72u) 

( )H
e

PAR 4146.0=   65.0oHH       (72v) 

For September 

( )H
e

PAR 4313.0=   35.0oHH       (72w) 

( )H
e

PAR 3994.0=   65.035.0  oHH      (72x) 

( )H
e

PAR 3838.0=   65.0oHH       (72y) 

For October 

( )H
e

PAR 4245.0=   35.0oHH       (72z) 

( )H
e

PAR 3847.0=   65.035.0  oHH      (72aa) 

( )H
e

PAR 3771.0=   65.0oHH       (72ab) 

For November 

( )H
e

PAR 4173.0=   35.0oHH       (72ac) 

( )H
e

PAR 3751.0=   65.035.0  oHH      (72ad) 

( )H
e

PAR 3885.0=   65.0oHH       (72ae) 

For December 

( )H
e

PAR 3966.0=   35.0oHH       (72af) 

( )H
e

PAR 3639.0=   65.035.0  oHH      (72ag) 

Bat-Oyun et al. [59] reported the following MB models for Mongolian grassland. 

For January 

( )H
e

PAR 425.0=           (73a) 

For February  

( )H
e

PAR 437.0=          (73b) 

For March 

( )H
e

PAR 427.0=          (73c) 

For April 

( )H
e

PAR 420.0=          (73d) 

For May 

( )H
e

PAR 421.0=          (73e) 

For June 

( )H
e

PAR 448.0=          (73f) 

For July 
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( )H
e

PAR 459.0=          (73g) 

For August 

( )H
e

PAR 439.0=          (73h) 

For September 

( )H
e

PAR 438.0=          (73i) 

For October 

( )H
e

PAR 449.0=          (73j) 

For November 

( )H
e

PAR 429.0=          (73k) 

For December 

( )H
e

PAR 423.0=          (73L) 

For January-December 

( )H
e

PAR 435.0=          (73m) 

For Growing Seasons (May-August) 

( )H
e

PAR 442.0=          (73n) 

For cloudy sky 

( )H
e

PAR 456.0=   33.0oHH       (73o) 

For partly cloudy sky 

( )H
e

PAR 439.0=   67.033.0  oHH      (73p) 

For clear sky 

( )H
e

PAR 430.0=   67.0oHH       (73q) 

For All sky 

( )H
e

PAR 434.0=   10  oHH       (73r) 

Abolfazi [61] obtained the following MB model for Southern Iran (January-

December) as: 

( )H
e

PAR 584.0=          (74a) 

Yu and Guo [76] fitted the following HB models for Bonville, Illinois and Sioux 

Falls, South Dakota in Midwestern United States under various sky conditions. 

For Bonville, Illinois 

( )H
e

PAR 463.0=   35.0oHH       (75a) 

( )H
e

PAR 429.0=   65.035.0  oHH      (75b) 

( )H
e

PAR 416.0=   65.0oHH       (75c) 

 ( )H
e

PAR 422.0=   10  oHH       (75d) 

For Sioux Falls, South Dakota 
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( )H
e

PAR 475.0=   35.0oHH       (75e) 

( )H
e

PAR 446.0=   65.035.0  oHH      (75f) 

( )H
e

PAR 433.0=   65.0oHH       (75g) 

 ( )H
e

PAR 438.0=   10  oHH       (75h) 

Akitsu et al. [49] recorded the following MB models for Tsukuba, Japan. 

For Summer Period (a wet season) 

( )H
e

PAR 465.0=          (76a) 

For Winter Period (a dry season) 

( )H
e

PAR 420.0=          (76b) 

Yu et al. [113] established the DB model for several locations in the contiguous 

United States under various sky conditions. 

For Bonville, Illinois 

( )H
e

PAR 4642.0=   3.0oHH       (77a) 

( )H
e

PAR 4271.0=   7.03.0  oHH      (77b) 

( )H
e

PAR 4169.0=   7.0oHH       (77c) 

( )H
e

PAR 4169.0=   All Sky      (77d) 

For Desert Rock, Nevada         

( )H
e

PAR 4906.0=   3.0oHH       (77e) 

( )H
e

PAR 4486.0=   7.03.0  oHH      (77f) 

( )H
e

PAR 4346.0=   7.0oHH       (77g) 

( )H
e

PAR 4371.0=   All Sky      (77h) 

For Fort Pecks, Montana 

( )H
e

PAR 4767.0=   3.0oHH       (77i) 

( )H
e

PAR 4447.0=   7.03.0  oHH      (77j) 

( )H
e

PAR 4360.0=   7.0oHH       (77k) 

( )H
e

PAR 4415.0=   All Sky      (77L) 

For Goodwin Creek/Mississippi 

( )H
e

PAR 4623.0=   3.0oHH       (77m) 

( )H
e

PAR 4317.0=   7.03.0  oHH      (77n) 

( )H
e

PAR 4220.0=   7.0oHH       (77o) 

( )H
e

PAR 4284.0=   All Sky      (77p) 
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For Penn, State University, Pennsylvania 

( )H
e

PAR 4519.0=   3.0oHH       (77q) 

( )H
e

PAR 4221.0=   7.03.0  oHH      (77r) 

( )H
e

PAR 4116.0=   7.0oHH       (77s) 

( )H
e

PAR 4196.0=   All Sky      (77t) 

For Sioux Falls, South Dakota 

( )H
e

PAR 4714.0=   3.0oHH       (77u) 

( )H
e

PAR 4452.0=   7.03.0  oHH      (77v) 

( )H
e

PAR 4370.0=   7.0oHH       (77w) 

( )H
e

PAR 4409.0=   All Sky      (77x) 

For Table Mountain, Boulder, Colorado 

( )H
e

PAR 4626.0=   3.0oHH       (77y) 

( )H
e

PAR 4301.0=   7.03.0  oHH      (77z) 

( )H
e

PAR 4231.0=   7.0oHH       (77aa) 

( )H
e

PAR 4266.0=   All Sky      (77ab) 

For All Sites  

( )H
e

PAR 4638.0=   3.0oHH       (77ac) 

( )H
e

PAR 4342.0=   7.03.0  oHH      (77ad) 

( )H
e

PAR 4286.0=   7.0oHH       (77ae) 

( )H
e

PAR 4381.0=   All Sky      (77af) 

Nwokolo et al. [70] calibrated the following MB models for several locations in 

Nigeria. 

Port Harcourt 

For January 

( )H
e

PAR 4682.0=           (78a) 

For February  

( )H
e

PAR 4712.0=          (78b) 

For March 

( )H
e

PAR 4838.0=          (78c) 

For April 

( )H
e

PAR 4886.0=          (78d) 

For May 
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( )H
e

PAR 4983.0=          (78e) 

For June 

( )H
e

PAR 5199.0=          (78f) 

For July 

( )H
e

PAR 5231.0=          (78g) 

For August 

( )H
e

PAR 5127.0=          (78h) 

For September 

( )H
e

PAR 5204.0=          (78i) 

For October 

( )H
e

PAR 5134.0=          (78j) 

For November 

( )H
e

PAR 4949.0=          (78k) 

For December 

( )H
e

PAR 4738.0=          (78L) 

For January-December 

( )H
e

PAR 4974.0=          (78m) 

For Dry Season 

( )H
e

PAR 4843.0=          (78n) 

For Rainy Season 

( )H
e

PAR 5064.0=          (78o) 

Enugu 

For January 

( )H
e

PAR 4880.0=           (78p) 

For February  

( )H
e

PAR 4820.0=          (78q) 

For March 

( )H
e

PAR 4811.0=          (78r) 

For April 

( )H
e

PAR 4751.0=          (78s) 

For May 

( )H
e

PAR 4726.0=          (78t) 

For June 

( )H
e

PAR 4833.0=          (78u) 

For July 
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( )H
e

PAR 4974.0=          (78v) 

For August 

( )H
e

PAR 4982.0=          (78w) 

For September 

( )H
e

PAR 4965.0=          (78x) 

For October 

( )H
e

PAR 5027.0=          (78y) 

For November   

( )H
e

PAR 4807.0=          (78z) 

For December 

( )H
e

PAR 4841.0=          (78aa) 

For January-December 

( )H
e

PAR 4868.0=          (78ab) 

For Dry Season 

( )H
e

PAR 4875.0=          (78ac) 

For Rainy Season 

( )H
e

PAR 4863.0=          (78ad) 

Abeokuta 

For January 

( )H
e

PAR 4542.0=           (78ae) 

For February  

( )H
e

PAR 4601.0=          (78af) 

For March 

( )H
e

PAR 4640.0=          (78ag) 

For April 

( )H
e

PAR 4780.0=          (78ah) 

For May 

( )H
e

PAR 4814.0=          (78ai) 

For June 

( )H
e

PAR 4925.0=          (78aj) 

For July 

( )H
e

PAR 5047.0=          (78ak) 

For August 

( )H
e

PAR 5103.0=          (78aL) 

For September 
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( )H
e

PAR 5032.0=          (78am) 

For October 

( )H
e

PAR 4877.0=          (78an) 

For November 

( )H
e

PAR 4643.0=          (78ao) 

For December 

( )H
e

PAR 4542.0=          (78ap) 

For January-December 

( )H
e

PAR 4798.0=          (78aq) 

For Dry Season  

( )H
e

PAR 4641.0=          (78ar) 

For Rainy Season 

( )H
e

PAR 4906.0=          (78as) 

Ilorin  

For January 

( )H
e

PAR 4486.0=           (78at) 

For February  

( )H
e

PAR 4520.0=          (78au) 

For March 

( )H
e

PAR 4559.0=          (78av) 

For April 

( )H
e

PAR 4614.0=          (78aw) 

For May 

( )H
e

PAR 4663.0=          (78ax) 

For June 

( )H
e

PAR 4713.0=          (78ay) 

For July 

( )H
e

PAR 4884.0=          (78az) 

For August 

( )H
e

PAR 4953.0=          (78aaa) 

For September 

( )H
e

PAR 4796.0=                    (78aab) 

For October 

( )H
e

PAR 4665.0=          (78aac) 

For November 
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( )H
e

PAR 4433.0=                    (78aad) 

For December 

( )H
e

PAR 4414.0=          (78aae) 

For January-December 

( )H
e

PAR 4647.0=          (78aaf) 

For Dry Season     

( )H
e

PAR 4504.0=                    (78aag) 

For Rainy Season 

( )H
e

PAR 4740.0=                    (78aah) 

Sokoto 

For January          

( )H
e

PAR 4492.0=           (78aai) 

For February  

( )H
e

PAR 4438.0=          (78aaj) 

For March 

( )H
e

PAR 4419.0=                    (78aak) 

For April 

( )H
e

PAR 4430.0=                    (78aaL) 

For May 

( )H
e

PAR 4444.0=                   (78aam) 

For June 

( )H
e

PAR 4500.0=                   (78aan) 

For July 

( )H
e

PAR 4596.0=                   (78aao) 

For August 

( )H
e

PAR 4715.0=                   (78aap) 

For September 

( )H
e

PAR 4595.0=                   (78aaq) 

For October 

( )H
e

PAR 4545.0=          (78aar) 

For November 

( )H
e

PAR 4453.0=          (78aas) 

For December 

( )H
e

PAR 4483.0=          (78aat) 

For January-December 
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( )H
e

PAR 4535.0=         (78aau) 

For Dry Season 

( )H
e

PAR 4480.0=         (78aav) 

For Rainy Season 

( )H
e

PAR 5580.0=         (78aaw) 

Bauchi 

For January  

( )H
e

PAR 4489.0=          (78aax) 

For February  

( )H
e

PAR 4481.0=         (78aay) 

For March 

( )H
e

PAR 4523.0=         (78aaz) 

For April 

( )H
e

PAR 4566.0=         (78aaaa) 

For May 

( )H
e

PAR 4535.0=          (78aaab) 

For June  

( )H
e

PAR 4534.0=         (78aaac) 

For July 

( )H
e

PAR 4636.0=         (78aaad) 

For August 

( )H
e

PAR 4625.0=         (78aaae) 

For September 

( )H
e

PAR 4596.0=         (78aaaf) 

For October 

( )H
e

PAR 4502.0=         (78aaag) 

For November 

( )H
e

PAR 4466.0=         (78aaah) 

For December 

( )H
e

PAR 4463.0=         (78aaai) 

For January-December 

( )H
e

PAR 4974.0=         (78aaaj) 

For Dry Season 

( )H
e

PAR 4482.0=         (78aaak) 

For Rainy Season  
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( )H
e

PAR 4528.0=         (78aaaL) 

  

4.1.3 Group 3 

 Empirical models from this group are parameterized as the first-order polynomial 

function of the global solar radiation where photosynthetically active radiation ( )p
PAR  is 

expressed in photon units (µmolJ-1, E MJ-1 etc.) and photosynthetically active radiation

( )e
PAR  is expressed in energy terms as shown below in the following forms: 

( ) bHa
p

PAR +=          (79) 

( ) bHa
e

PAR +=          (80) 

where a and b are the regression coefficients and other symbols retain their usual meaning. 

Meek et al. [41] fitted the following MB model for Fresno-West side located at the 

University of California, USA as: 

( ) 163.0017.2 += H
p

PAR         (81) 

Aguiar et al. [66] obtained the following HB and DB models for Fazenda Nossa 

Senhora in Rondonia. 

For Hour Basis, HB 

( ) 747.0478.0 += H
e

PAR            (wet season)     (82a) 

( ) 0689.1471.0 −= H
e

PAR            (wet-dry season)    (82b) 

( ) 578.4452.0 −= H
e

PAR           (dry season)     (82c) 

( ) 877.0466.0 −= H
e

PAR                   (dry-wet season)     (82d) 

For Daily Basis, DB 

( ) 956.4466.0 += H
e

PAR           (wet season)     (82e) 

( ) 735.0466.0 += H
e

PAR           (wet-dry season)     (82f) 

( ) 762.6457.0 −= H
e

PAR           (dry season)     (82g) 

( ) 244.4452.0 += H
e

PAR           (dry-wet season)                  (82h) 

Finch et al. [67] obtained the following MB model for Zambia as: 

( ) 9749.18807.1 += H
p

PAR         (83) 

Aguiar et al. [65] fitted the following HB and DB models for pasture and forest 

sites in South West Amazonia. 

For Pasture Site (Hourly Basis, HB) 

( ) 474.0283.0 += H
e

PAR               (wet season)     (84a) 

( ) 467.088818.0 +−= H
e

PAR   (wet-dry season)    (84b) 

( ) 449.0192.4 +−= H
e

PAR   (dry season)     (84c) 

( ) 464.0160.1 +−= H
e

PAR   (dry-wet season)    (84d) 
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( ) 462.0162.1 +−= H
e

PAR   (Annual)     (84e) 

For Forest Site (Hourly Basis, HB) 

( ) 423.0407.0 +−= H
e

PAR   (wet season)     (84f) 

( ) 420.0766.0 += H
e

PAR   (wet-dry season)    (84g) 

( ) 432.0444.3 +−= H
e

PAR   (dry season)     (84h) 

( ) 427.0594.0 += H
e

PAR   (dry-wet season)    (84i) 

( ) 425.0482.0 +−= H
e

PAR   (Annual)     (84j) 

For Pasture Site (Daily Basis, DB) 

( ) 464.0847.3 += H
e

PAR   (wet season)     (84k) 

( ) 459.0363.2 += H
e

PAR              (wet-dry season)     (84L) 

( ) 449.0044.4 +−= H
e

PAR   (dry season)     (84m) 

( ) 447.0389.5 += H
e

PAR   (dry-wet season)    (84n) 

( ) 443.0254.6 += H
e

PAR              (Annual)     (84o) 

For Forest Site (Daily Basis, DB) 

( ) 416.0881.1 += H
e

PAR   (wet season)     (84p) 

( ) 422.0154.0 +−= H
e

PAR   (wet-dry season)    (84q) 

( ) 433.0017.4 +−= H
e

PAR   (dry season)     (84r) 

( ) 422.0672.2 += H
e

PAR   (dry-wet season)    (84s) 

( ) 421.0795.0 += H
e

PAR              (Annual)     (84t) 

Melina-Maria et al. [77] stimulated the following HB model for Greece as: 

( ) 424.7457.0 −= H
e

PAR         (85) 

 

4.2 Relative Humidity-Based Models 
 Relative humidity-based computing models are often employed for estimating PAR 

in that it has been observed that when the total energy in the near infrared (NIR) portion of 

the solar spectrum greatly reduced, relative humidity is almost transparent to PAR 

wavelength. Thus, increasing global solar radiation in the NIR range will culminate into a 

lower PAR clearness index in the coastal region and higher PAR clearness index in the 

interior region. On this ground, it can be inferred that relative humidity can be employed 

for estimating PAR in geographical regions where relative humidity is greater than 64% 

annually. Hence, solar energy researchers have applied this meteorological parameter to 

stimulate computing models for estimating PAR as presented in this section. Therefore, 

empirical models from this group are parameterized as the first-order polynomial function 
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of the relative humidity (RH) where photosynthetically active radiation ( )e
PAR  is expressed 

in energy terms as shown below in the following form: 









+=

100

RH
ba

oPAR

e
PAR

         (86) 

where a and b are the regression coefficients and other symbols retain their usual meaning. 
 

Nwokolo et al. [60] developed the following MB models for several locations in 

Nigeria under various seasons and all sky conditions. 

For Port Harcourt 









−=

100
209.2300.2

RH

oPAR

e
PAR

  (All sky conditions)    (87a) 









+=

100
354.0118.0

RH

oPAR

e
PAR

  (Rainy season)     (87b) 









−=

100
293.1597.1

RH

oPAR

e
PAR

  (Dry season)     (87c) 

For Owerri 









−=

100
167.1484.1

RH

oPAR

e
PAR

  (All sky conditions)    (87d) 









−=

100
941.0277.1

RH

oPAR

e
PAR

  (Rainy season)     (87e) 









−=

100
603.0074.1

RH

oPAR

e
PAR

  (Dry season)     (87f) 

For Ikeja 









−=

100
364.1651.1

RH

oPAR

e
PAR

  (All sky conditions)    (87g) 









−=

100
600.0990.0

RH

oPAR

e
PAR

  (Rainy season)     (87h) 









−=

100
491.0997.0

RH

oPAR

e
PAR

  (Dry season)     (87i) 

For Abuja 









−=

100
369.0866.0

RH

oPAR

e
PAR

  (All sky conditions)    (87j) 
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







−=

100
875.1111.2

RH

oPAR

e
PAR

  (Rainy season)     (87k) 









−=

100
095.0763.0

RH

oPAR

e
PAR

  (Dry season)     (87L) 

For Maiduguri 









−=

100
247.0790.0

RH

oPAR

e
PAR

  (All sky conditions)    (87m) 









+=

100
049.0661.0

RH

oPAR

e
PAR

  (Rainy season)     (87n) 









−=

100
406.0816.0

RH

oPAR

e
PAR

  (Dry season)     (87o) 

For Sokoto 









−=

100
141.0779.0

RH

oPAR

e
PAR

  (All sky conditions)    (87p) 









−=

100
224.0835.0

RH

oPAR

e
PAR

  (Rainy season)     (87q) 









−=

100
300.0796.0

RH

oPAR

e
PAR

  (Dry season)     (87r) 

 

4.3 Temperature-Based Models 
Temperature-based model is an adaptation of Hargreaves-Samani [114] type 

computing model for estimating Photosynthetically Active Radiation (PAR) especially 

where sunshine hour, global solar radiation, data, etc. are not readily available. This could 

be attributed to the availability of daily mean minimum and maximum temperature in most 

standard stations around the location of interest; hence, researchers employed this 

meteorological parameter for estimating PAR on the horizontal surface. The basis of 

temperature-based computing models is that the differences between the maximum and 

minimum temperature is directly proportional to the fraction of extraterrestrial PAR 

received at the surface of the earth. However, other factors that affect temperature 

difference include cloudiness, relative humidity, elevation, topography, latitude and 

proximity to a large body of water. In this temperature-based computing model, PAR 

clearness index is a function of maximum and minimum temperature as show in this 

section. Therefore, empirical models from this group were calibrated from Hargreaves and 

Samani [114] computing model where photosynthetically active radiation ( )e
PAR  is 

expressed in energy terms as shown below in the following form: 
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( )minmax TTaHPAR −=         (88) 

where a being the regression coefficient and Tmax and Tmin are the maximum and minimum 

temperature and other symbols retain their usual meaning. 

Abolfazi [61] calibrated the following MB model for Shiraz University in South 

Iran as: 

( )minmax0993.0 TTHPAR −=        (89) 

 

4.4 Optical Air Mass-Based Models 
Optical air mass-based models have been employed by solar energy researchers for 

estimating PAR on hourly, daily and monthly time scales as a result of its observable 

influence on it. PAR changes as atmospheric parameters fluctuate. Experimental reports 

have revealed that PAR generally decrease with increasing optical air mass and the maxima 

were achieved when the sky conditions were cloudless. Meanwhile, PAR under clear skies 

decreased exponentially with optical air mass and the dispersion was much smaller than 

that under all sky conditions, which implies that PAR can be modelled using an exponential 

function of optical air mass in any region of the world as presented in these functional 

forms: 

( ) b
ma

e
PAR

−
=          (90) 

( ) b
ma

p
PAR

−
=          (91) 

where m being the optical air mass, a and b are the regression coefficients and symbols 

retain their usual meaning. 

Wang et al. [9] stimulated the following DB model for Central China as: 

( ) 06.1
1721

−
= m

e
PAR          (92) 

Hu and Wang [62] developed the following MB model for Sanjiang in Northeast 

China under clear sky condition as: 

( ) 3.1
7.2253

−
= m

p
PAR          (93) 

Wang et al. [63] established the following MB model for Inner Mongolia, China 

as: 

( ) 98.0
3.1524

−
= m

p
PAR         (94) 

Hu et al. [64] fitted the following MB model for North China Plain as: 

( ) 1.1
1.1886

−
= m

p
PAR          (95) 

 

4.5 Cloud Amount-Based Models 
Cloud amount as a climate variable is the fraction of the sky obscured by clouds 

when observed from a given locality. Cloud amount data are periodically obtained from 

meteorological stations or satellites-derived and are expressed in percent (%) of the 

maximum cloud amount. Cloud amount is mostly classified into several categories of 0 – 

24%, 25 – 49%, 50 – 74% and 75 – 100%. The implication is that zero percent implies no 

visible cloud in the sky while hundred percent cloud amount indicates no clear sky is 

visible. Researchers in the domain of renewable energy in the past have investigated and 
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simulated empirical computing models to relate cloud amount conditions and PAR owing 

to the fact that as PAR/H increases, cloud amount increases as well. This is because of the 

absorption of water vapour’s waveband selective in the solar spectrum that is, in cloudy 

and humid conditions, the absorption of solar radiation in the infrared portion of the solar 

spectrum is enhanced whereas absorption in the PAR waveband does not vary significantly 

as shown in the relations below. 

( )Cba
H

e
PAR

+=          (96) 

where a and b are the regression coefficients, C is the cloud amount and other symbols 

retain their usual meaning. 
 

Li et al. [55] obtained the following MB model for Northern Tibetan Plateau, China 

as: 

( )C
H

e
PAR

04581.04315.0 +=         (97) 

 

4.6 Water Vapour Pressure-Based Models 
Water vapour pressure-based models have been applied by researchers in the 

domain of renewable energy for estimating PAR in that it causes observable influence on 

the ratio of PAR/H. PAR/H fluctuates with changes in the atmospheric parameters. 

Experimental reports have shown that PAR/H increases with the increase in water vapour 

pressure. This could be attributed to the absorption of water vapour’s waveband selective 

in the solar spectrum. That is, in cloudy and humid conditions, the absorption of solar 

radiation in the near infrared (NIR) portion of the solar spectrum is not vary significantly, 

hence, an increase in the PAR/H ratio occur under cloudy and humid conditions. Thus, in 

this section, water vapour is related to PAR/H as shown below.                                   

( )*
EbIna

H

e
PAR

+=          (98) 

where oPPEE =
*

. E is the monthly average value of water vapour pressure at the site. Po 

is the standard atmospheric pressure at the sea level (1013hPa). P is the monthly average 

atmospheric pressure at the site. Where a and b are the regression coefficients and other 

symbols retain their usual meaning. 
 

Li et al. [55] fitted the following model for Northern Tibetan Plateau, China as: 

( )*
0087.04345.0 EIn

H

e
PAR

+=         (99) 

 
4.7 Turbidity-Based Models 

Observable influence of turbidity ( )c  on the ratio of PAR/H in recent 

experimental report have culminated into development of empirical computing models for 

relating turbidity to ratio of PAR/H. This could be attributed to the absorption of water 

vapour pressure and cloud amount waveband selective in the solar spectrum. In cloudy and 
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humid conditions, the absorption of solar radiation in the near infrared (NIR) portion of the 

solar spectrum is enhanced, whereas absorption in the PAR waveband does not vary 

significantly, thus, an increase in the PAR/H ratio is found under cloudy and humid 

conditions. Therefore, in this section, turbidity is related to PAR/H as presented in the 

functional form below. 

( )cba
H

e
PAR

+=          (100) 

where a and b are the regression coefficients, ( )c  being turbidity and other symbols retain 

their usual meaning. 

 

Li et al. [55] fitted the following MB model for Northern Tibetan Plateau, China 

as: 

( )c
H

e
PAR

247.04547.0 −=         (101) 

 

4.8 Sunshine-Based models 
The relative sunshine duration is one of the most commonly employed 

meteorological parameter for estimating PAR globally since sunshine duration is measured 

routinely at numerous meteorological stations across the globe, researchers in the domain 

of renewable energy often apply this parameter for PAR estimating worldwide as presented 

in this section. 

 

4.8.1 Group 1 

Empirical models from this group are parameterized as the first-order polynomial 

function of the sunshine where photosynthetically active radiation ( )p
PAR  is expressed in 

photon units (µmolJ-1, E MJ-1 etc.) and photosynthetically active radiation ( )e
PAR  is 

expressed in energy terms as shown below in the following forms: 

 









+=

oS

S
ba

H

e
PAR

         (102) 









+=

oS

S
ba

H

p
PAR

         (103) 









+=

oS

S
ba

oPAR

e
PAR

         (104) 









+=

oS

S
ba

oPAR

p
PAR

         (105) 

where a and b are the regression coefficients, 








oS

S
 being sunshine fraction and other 

symbols retain their usual meaning. 
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Udo and Aro [74] established the following MB models for Ilorin, Nigeria between 

1993-1994. 

For data obtained in 1993 









+=

oS

S

oPAR

p
PAR

06.141.0         (106a) 

For data recorded in 1994 









+=

oS

S

oPAR

p
PAR

89.053.0         (106b) 

For 1993-1994 data 









+=

oS

S

oPAR

p
PAR

99.047.0         (106c) 

For dry season 









+=

oS

S

oPAR

p
PAR

76.059.0         (106d) 

For rainy season 









+=

oS

S

oPAR

p
PAR

18.139.0         (106e) 

For 1993-1994 data 









+=

oS

S

oPAR

e
PAR

22.011.0         (106f) 

Li et al. [55] stimulated the following MB model for Northern Tibetan Plateau, 

China as: 









−=

oS

S

H

e
PAR

0591.04861.0         (107) 

Abolfazi [61] obtained the following MB model for Shiraz University in South Iran 

as: 









+=

oS

S

oPAR

e
PAR

338.0188.0         (108) 

 

4.8.2 Group 2 

Empirical models from this group are parameterized as the second-order 

polynomial function of the sunshine where photosynthetically active radiation ( )p
PAR  is 

expressed in photon units (µmolJ-1, E MJ-1 etc.) as shown below in the following form: 

2

















++=

oS

S
c

oS

S
ba

oPAR

p
PAR

        (109) 



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 236-327. doi: 10.17737/tre.2018.4.2.0079 285 

 

 

 

where a, b and c are the regression coefficients, 








oS

S
 being sunshine fraction and other 

symbols retain their usual meaning. 

Udo and Aro [74] established the following MB models for Ilorin, Nigeria between 

1993-1994. 

2

85.176.207.0 















−+=

oS

S

oS

S

oPAR

p
PAR

       (110) 

 

4.8.3 Group 3 

Empirical models from this group are parameterized as logarithmic fit of the 

sunshine where photosynthetically active radiation ( )p
PAR  is expressed in photon units 

(µmolJ-1, E MJ-1 etc.) as shown below in the following form: 

 









+=

oS

S
bIna

oPAR

p
PAR

         (111) 

where a and b are the regression coefficients, 








oS

S
 being sunshine fraction and other 

symbols retain their usual meaning. 

Udo and Aro [74] established the following MB models for Ilorin, Nigeria between 

1993-1994. 









+=

oS

S
In

oPAR

p
PAR

46.029.1         (112) 

 

4.9 Clearness Index-Based Models 
Clearness index (Kt) indicates that percentage depletion by the sky of the incoming 

solar variation and therefore gives both the level of availability of solar radiation and 

changes in the atmospheric condition in a given environment [1-2]. for this purpose, 

clearness index is closely related to PAR. Thus, clearness index has been known as a 

keynote determinant parameter for estimating PAR across the globe. One of the greatest 

characteristics of the model from this class is their convenient application in that utilizing 

them involve only measured global solar radiation data. Several functional forms and 

computing models have been employed for estimating PAR applying this parameter on 

HB, DB and MB across the globe as outline in this section according to their developing 

year. 

 

4.9.1 Group 1 

Empirical models from this group are parameterized as the first-order polynomial 

function of the clearness index where photosynthetically active radiation ( )e
PAR  is expressed 

in energy terms as shown below in the following forms: 
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







+=

oH

H
ba

oPAR

e
PAR

         (113) 









+=

oH

H
ba

oH

e
PAR

         (114) 









+=

oH

H
bIna

H

e
PAR

         (115) 

Yu et al. [72] fitted the following MB model for contiguous United States as: 









−=

oH

H
In

H

e
PAR

04095.04180.0        (116) 

Etuk et al. [68] establish the following MB models for Calabar, Nigeria as follows: 









+=

oH

H

oH

e
PAR

448.0001.0         (117a) 









+=

oH

H

oPAR

e
PAR

119.1002.0         (117b) 

 

4.9.2 Group 2 

Empirical models from this group are parameterized as the second-order 

polynomial function of the sunshine where photosynthetically active radiation ( )p
PAR  is 

expressed in photon units (µmolJ-1, E MJ-1 etc.) and photosynthetically active radiation

( )e
PAR  is expressed in energy terms as shown below in the following forms: 

2

















++=

oH

H
c

oH

H
ba

H

e
PAR

       (118) 

2

















++=

oH

H
c

oH

H
ba

H

p
PAR

       (119) 

2

















++=

oH

H
c

oH

H
ba

oH

e
PAR

       (120) 

2

















++=

oH

H
c

oH

H
ba

oPAR

e
PAR

       (121) 

2

















++=

oH

H
cIn

oH

H
bIna

H

e
PAR

       (122) 

Tsubo and Walker [48] fitted the following MB and HB models for Bloemfontein, 

South Africa. 

For Daily Basis (DB) 
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2

150.0401.0635.0 















+−=

oH

H

oH

H

H

p
PAR

      (123a) 

For Hourly Basis (HB) 

2

121.0334.0613.0 















+−=

oH

H

oH

H

H

p
PAR

      (123b) 

Wang et al. [71] established the following HB model for Central China as: 

2

659.0625.0567.0 















−−=

oH

H

oH

H

H

p
PAR

      (124) 

Yu et al. [72] fitted the following MB model for contiguous United States as: 

2

01223.0012238.04287.0 















−+=

oH

H
In

oH

H
In

H

e
PAR

     (125) 

Etuk et al. [69] calibrated the following MB models for several locations in Nigeria. 

For Port Harcourt 

2

001.0126.1001.0 















−+=

oH

H

oH

H

oPAR

e
PAR

      (126a) 

For Enugu 

2

027.0101.1005.0 















−+=

oH

H

oH

H

oPAR

e
PAR

      (126b) 

For Abeokuta 

2

003.0128.1001.0 















−+−=

oH

H

oH

H

oPAR

e
PAR

      (126c) 

For Ilorin 

2

192.0919.0053.0 















−+=

oH

H

oH

H

oPAR

e
PAR

      (126d) 

For Bauchi 

2

076.0032.1028.0 















++=

oH

H

oH

H

oPAR

e
PAR

      (126e) 

For Sokoto 

2

051.0186.1018.0 















−+−=

oH

H

oH

H

oPAR

e
PAR

      (126f) 

Etuk et al. [68] proposed the following MB models for Calabar, Nigeria as follows: 
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2

103.0034.1020.0 















++=

oH

H

oH

H

oPAR

e
PAR

      (127a) 

2

050.0406.0009.0 















++=

oH

H

oH

H

oH

e
PAR

      (127b) 

Nwokolo et al. [70] calibrated the following MB models for numerous locations in 

Nigeria. 

For Port Harcourt 

2

126.0338.0614.0 















+−=

oH

H

oH

H

H

e
PAR

      (128a) 

For Enugu 

2

134.0345.0616.0 















+−=

oH

H

oH

H

H

e
PAR

      (128b) 

For Abeokuta 

2

142.0088.0557.0 















−−=

oH

H

oH

H

H

e
PAR

      (128c) 

For Ilorin 

2

007.0201.0576.0 















+−=

oH

H

oH

H

H

e
PAR

      (128d) 

For Sokoto 

2

129.0343.0616.0 















+−=

oH

H

oH

H

H

e
PAR

      (128e) 

For Bauchi 

2

127.0341.0615.0 















+−=

oH

H

oH

H

H

e
PAR

      (128f) 

 

4.9.3 Group 3 

Empirical models from this group are parameterized as the third-order polynomial 

function of the sunshine where photosynthetically active radiation ( )p
PAR  is expressed in 

photon units (µmolJ-1, E MJ-1 etc.) as shown below in the form: 

32

























+++=

oH

H
d

oH

H
c

oH

H
ba

p
PAR       (129) 

Wang et al. [98] obtained the following MB model for Wuhan, Central China as: 
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3

4.1926

2

3.22102.31304.28 























+−+=

oH

H

oH

H

oH

Hp
PAR     (130) 

Wang et al. [63] developed the following MB model for Inner Mongolia, China 

from 1990 to 2012 as: 

3

0.1470

2

3.18232.1185488.110 























−++=

oH

H

oH

H

oH

Hp
PAR     (131) 

Wang et al. [115] proposed the following MB model in China as: 

3

4.734

2

3.7912.17714.58 























−++=

oH

H

oH

H

oH

Hp
PAR     (132) 

Peng et al. [73] fitted the following MB model for Tibatan Plateau, Lhasa, China 

as: 

3

33.846

2

6.10941.148698.88 























−++=

oH

H

oH

H

oH

Hp
PAR     (133) 

Hu et al. [116] stimulated the following model for Tibetan Plateau, China as: 

3

8.1182

2

7.12469.22565.73 























−++=

oH

H

oH

H

oH

Hp
PAR     (134) 

 

4.10 Hybrid Parameter-Based Models 
In as much as input parameters for estimating PAR on the horizontal surface varies 

periodically with the local climate in a given geographical location, it therefore indicates 

that to accurately stimulate a computing model that can fit a specific geographical area, 

solar energy researchers must test the local climate with various input parameters 

depending on the availability of the measurable metrological parameters and atmospheric 

variables at the disposal of the researcher. Numerous solar energy researchers across the 

globe have observed that hybrid parameter-based computing models fit local climate more 

than one variable-global solar radiation-based models, relative humidity-based models, 

temperature-based models, relative humidity-based models, temperature-based models, 

optical air mass-based models, cloud amount-based models, water vapour pressure-based 

models, turbidity-based models, sunshine-based models and clearness index-based models 

employed for estimating PAR. In this section, several hybrid parameter-based models are 

presented and classified based on their input parameters and developing year. 

 

4.10.1 Group 1 

In this group, global solar radiation and clearness index were incorporated with 

PAR in the forms: 

( ) c

oH

H
ba

p
PAR H ++= 








        (135) 
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( ) c

oH

H
ba

e
PAR H ++= 








        (136) 

Aguiar et al. [65] established the following HB models for pasture and forest sites 

in South Amazonia under hourly and daily time scales. 

For Pasture site (Hourly Basis, HB) 

( ) 547.5478.0146.1 −+= 








oH

He
PAR H   (wet season)    (137a) 

( ) 911.6471.0336.1 −+= 








oH

He
PAR H   (wet-dry season)   (137b) 

( ) 669.7445.0633.6 ++−= 








oH

He
PAR H  (dry season)     (137c) 

( ) 641.27480.0904.3 −+= 








oH

He
PAR H  (dry-wet season)   (137d) 

( ) 761.11469.0612.1 −+= 








oH

He
PAR H  (Annual)    (137e) 

For Forest Site (Hourly Basis, HB) 

( ) 882.22437.0074.3 −+= 








oH

He
PAR H  (wet season)     (137f) 

( ) 042.8424.0121.3 −+= 








oH

He
PAR H   (wet-8dry season)   (137g) 

( ) 302.9436.08017.0 −+−= 








oH

He
PAR H  (dry season)    (137h) 

( ) 168.32447.0544.5 −+= 








oH

He
PAR H  (dry-wet season)   (137i) 

( ) 509.16434.0939.2 −+= 








oH

He
PAR H  (Annual)    (137j) 

For Pasture Site (Daily Basis, DB) 

( ) 516.1466.0847.3 −+= 








oH

He
PAR H   (wet season)    (137k) 

( ) 827.39513.0737.2 −+= 








oH

He
PAR H  (wet-dry season)    (137L) 

( ) 082.79335.0946.0 ++−= 








oH

He
PAR H  (dry season)    (137m) 

( ) 374.234709.0109.4 −+= 








oH

He
PAR H  (dry-wet season)   (137n) 
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( ) 375.27479.0257.5 −+= 








oH

He
PAR H  (Annual)     (137o) 

For Forest Site (Daily Basis, DB) 

( ) 467.41457.0738.2 −+= 








oH

He
PAR H  (wet season)     (137p) 

( ) 599.9410.0339.0 ++−= 








oH

He
PAR H  (wet-dry season)    (137q) 

( ) 893.1431.0142.4 ++−= 








oH

He
PAR H   (dry season)   (137r)  

( ) 020.39384.0128.2 ++= 








oH

He
PAR H  (dry-wet season)    (137s) 

( ) 352.4426.0925.0 −+= 








oH

He
PAR H   (Annual)    (137t) 

Hu and Wang [62] reported the following HB model for Northern China as: 

( ) 0.2090.29.61 ++= 








oH

Hp
PAR H        (138) 

Hu et al. [64] developed the following HB models for Beijing site in North China 

Plain as: 

( ) 8.427.24292.1 +−= 








oH

Hp
PAR H        (139) 

4.10.2 Group 2  

In this group, clearness index, daytime length (LD) and solar zenith angle ( )z
 were 

incorporated with PAR in the forms: 

D

e

z

ooo

p L
H

H
d

H

H
c

H

H
baPAR 























+








+








+= 

32

    (140) 

e

z

ooo

p

H

H
d

H

H
c

H

H
baPAR 























+








+








+=

32

     (141) 

D

e

z

ooo

e L
H

H
d

H

H
c

H

H
baPAR 























+








+








+= 

32

    (142) 

e

z

ooo

e

H

H
d

H

H
c

H

H
baPAR 























+








+








+=

32

     (143) 

Wang et al. [98] developed the following DB and I minute models for Wuhan, 

Central China. 

For I minute Basis 
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045.1

32

4.19263.22102.31304.28 z

ooo

p

H

H

H

H

H

H
PAR 























+








−








+=   (144a) 

For Daily Basis (DB) 

Dz

ooo

p L
H

H

H

H

H

H
PAR 























+








−








+= 045.1

32

5.4217.4839.68421.6    (144b) 

Wang et al. [63] fitted the following HB models for Inner Mongolia, China. 

For Hourly Basis (HB) 

941.0

32

14703.18332.118548.110 z

ooo

e

H

H

H

H

H

H
PAR 























−








+








+=   (145a) 

For Daily Basis (DB) 

47.1

32

39.10064.12639.3057.7 z

ooo

p

H

H

H

H

H

H
PAR 























−








+








+=   (145b) 

Peng et al. [73] fitted the following DB and I minute models for Lhasa (Tibetan 

Plateau) in China. 

For Daily Basis (DB) 

Dz

ooo

p L
H

H

H

H

H

H
PAR 























−








+








−= 621.1

32

93.117544.182909.15587.16   (146a) 

For I minute Basis 

027.1

32

33.8466.10941.148698.88 z

ooo

p

H

H

H

H

H

H
PAR 























−








+








−=   (146b) 

Wang et al. [115] developed the following HB and DB model for LZ station, China. 

For Hourly Basis (HB) 

045.1

32

4.7343.7912.17714.58 z

ooo

e

H

H

H

H

H

H
PAR 























−








+








+=   (147a) 

For Daily Basis (DB) 

622.1

32

77.3529.4222.6775.3 z

ooo

p

H

H

H

H

H

H
PAR 























−








+








+=    (147b) 

Hu et al. [116] established the following HB and DB models for Lhasa and Huaibei, 

Tibetan Plateau, China as follows: 

For Hourly Basis (HB)  

09.1

32

8.11827.12469.22565.73 z

ooo

e

H

H

H

H

H

H
PAR 























−








+








+=   (148a) 

For Daily Basis (DB) 
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Dz

ooo

e L
H

H

H

H

H

H
PAR 























−








+








−= 13.1

32

5.159.234.21.2     (148b) 

4.10.3 Group 3  

In this group, the attenuation factor in clear skies (AFC, ratio of measured to 

extraterrestrial (PARo) under clear skies), the attenuation factor with clouds, which can be 

expressed as H/Ho were incorporated with PAR fraction in the form: 
c

o

b

C

o

e

H

H
aAF

PAR

PAR








=         (149) 

where a, b and c are the regression coefficients and other symbols retain their usual 

meaning. 

Wang et al. [63] stimulated the HB model for Inner Mongolia, China as: 
88.0

34.006.1 







=

o

C

o

e

H

H
AF

PAR

PAR
        (150) 

 

4.10.4 Group 4 

In this group, clearness index and optical air mass (m) were incorporated with PAR 

clearness index in the form: 

c

b

oo

p

m
H

H
a

PAR

PAR








=          (151) 

where a, b and c are the regression coefficients and other symbols retain their usual 

meaning. 
 

Hu and Wang [62] developed the HB model for Northern China under all sky 

conditions as: 

7925.0

0012.0

92.0 m
H

H

PAR

PAR

oo

p
−









=        (152) 

Hu et al. [64] fitted the following HB model for Beijing site as: 

09.0

84.0

80.0 m
H

H

PAR

PAR

oo

p









=         (153) 

 

4.10.5 Group 5 

In this group, global solar radiation (H), solar zenith angle ( )z
, columnar 

perceptible water vapour (wv), and aerosol optical depth (AOD) were incorporated with 

PAR in the form: 

 

( ) ( ) ( ) ( ) eAODdwvcHbza
e

PAR ++++=        (154) 
 

Melina-Maria et al. [77] stimulated the following HB model for Greece as: 



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 236-327. doi: 10.17737/tre.2018.4.2.0079 294 

 

 

 

 

( ) ( ) ( ) ( ) 940.19447.3673.3431.0375.0 +−++−= AODwvHz
e

PAR      (155) 

 

4.10.6 Group 6 

In this group, water vapour pressure and relative sunshine duration were 

incorporated with ratio of PAR/H in the form: 

( ) 







++=

oS

S
cEba

H

e
PAR *         (156) 

where oPPEE =
*

. E is the monthly average value of water vapour pressure at the site. Po 

is the standard atmospheric pressure at the sea level (1013hPa). P is the monthly average 

atmospheric pressure at the site, while a, b and c are the regression coefficients and other 

symbols retain their usual meaning.  

Li et al. [55] obtained the following MB model for Northern Tibetan Plateau, China 

as: 

( ) 







−+=

oS

S
E

H

e
PAR

024.0
*

0161.0453.0       (157) 

 

4.10.7 Group 7 

In this group, clearness of the sky ( ) , brightness of the skylight ( ) , solar zenith 

angle ( )z
, clearness index, site elevation (h) and perceptible water (wv) were incorporated 

with PAR/H ratio in the forms: 

( ) ( ) ( ) ( )sinheInwvdIncInba
H

p
PAR

++++=        (158) 

( ) ( )Inwvdc

oH

H
Inba

H

p
PAR

+++= 







sinh       (159) 

Wang et al. [71] fitted the following HB models for Wuhan, Central China as: 

 

( ) ( ) ( ) ( )sinh1.0029.005.0054.0444.0 ++−−= InwvInIn
H

p
PAR

     (160a) 

( ) ( )Inwv

oH

H
In

H

p
PAR

025.0sinh027.0058.033.0 ++−= 







    (160b) 

 

4.10.8 Group 8 

In this group, water vapour pressure, global solar radiation and clearness index were 

incorporated with PAR in the form: 

( ) ( ) dEc

oH

H
bHa

e
PAR +++= 








        (161) 

Aguiar et al. [65] developed the following DB and HB models for Pasture and 

Forest Sites in South West Amazonia 
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For Pasture Site (Hourly Basis) 

( ) ( ) 385.0088.6478.0196.11 +−+= 







E

oH

H
H

e
PAR  (wet season)   (162a) 

( ) ( ) 246.0511.6470.0534.4 +−+−= 







E

oH

H
H

e
PAR  (wet-dry season)  (162b) 

( ) ( ) 339.0533.10444.0164.14 +++−= 







E

oH

H
H

e
PAR  (dry season)   (162c) 

( ) ( ) 127.0739.27480.0102.7 −−+= 







E

oH

H
H

e
PAR  (dry-wet season)  (162d) 

( ) ( ) 105.1210.3464.0505.26 +−+−= 







E

oH

H
H

e
PAR  (Annual)   (162e) 

For Forest Site (Hourly Basis) 

( ) ( ) 686.0446.27441.0054.12 +−+−= 







E

oH

H
H

e
PAR  (wet season)   (162f) 

( ) ( ) 436.0972.8425.0610.6 +−+−= 







E

oH

H
H

e
PAR  (wet-dry season)  (162g) 

( ) ( ) 606.0325.4435.0891.15 +−+−= 







E

oH

H
H

e
PAR  (dry season)   (162h) 

( ) ( ) 274.0066.34447.0518.0 +−+= 







E

oH

H
H

e
PAR  (dry-wet season)  (162i) 

( ) ( ) 467.0125.18435.0072.7 +−+−= 







E

oH

H
H

e
PAR  (Annual)   (162j) 

For Pasture Site (Daily Basis) 

( ) ( ) 023.0362.1466.0447.4 −−+= 







E

oH

H
H

e
PAR  (wet season)   (162k) 

( ) ( ) 499.0223.22487.0390.8 +−+−= 







E

oH

H
H

e
PAR  (wet-dry season)  (162L) 

( ) ( ) 927.0718.86347.0462.27 +++−= 







E

oH

H
H

e
PAR  (dry season)   (162m) 

( ) ( ) 629.0430.286766.0423.20 −−+= 







E

oH

H
H

e
PAR  (dry-wet season)  (162n) 

( ) ( ) 495.1944.17435.0302.34 +++−= 







E

oH

H
H

e
PAR  (Annual)   (162o) 

For Forest Site (Daily Basis) 
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( ) ( ) 903.0867.40453.0421.16 +−+−= 







E

oH

H
H

e
PAR  (wet season)   (162p) 

( ) ( ) 396.0108.3418.0834.8 +++−= 







E

oH

H
H

e
PAR  (wet-dry season)  (162q) 

( ) ( ) 069.1893.9442.0878.35 +++−= 







E

oH

H
H

e
PAR  (dry season)   (162r) 

( ) ( ) 773.0392.17398.0179.10 +++−= 







E

oH

H
H

e
PAR  (dry-wet season)  (162s) 

( ) ( ) 703.0702.6426.0566.13 +−+−= 







E

oH

H
H

e
PAR  (Annual)   (162t) 

4.10.9 Group 9 

In this group, solar zenith angle ( )z
, solar elevation angle ( ) , clearness of the sky 

( ) , brightness of skylight ( )  and dew temperature ( )dT  were incorporated with ratio of 

PAR with H in the form: 

( ) ( ) ( ) ( )
2

sine
d

TdIncInba
H

p
PAR

++++=       (163) 

( ) ( ) ( ) ( )
2

cose
d

TdIncInba
H

p
PAR

++++=       (164) 

Alados et al. [5] developed the following HB model at the University of Almeria 

site as: 

 

( ) ( ) ( ) ( )
2

sin032.0005.0202.0192.0786.1 ++−−=
d

TInIn
H

p
PAR

   (165) 

Alados and Alados-Arboledas [117] calibrated the following HB model at the 

University of Almeria site as: 

 

( ) ( ) ( ) ( )
2

cos032.0005.0202.0192.0786.1 ++−−=
d

TInIn
H

p
PAR

   (166) 

Wang et al. [9] developed the following HB models for Wuhan, Central China as: 

( ) ( ) 




+−−= 

2
sin072.0064.0052.0454.0 InIn

H

p
PAR

     (167) 

 

4.10.10 Group 10 

In this group, clearness of the solar zenith angle ( )z
, solar elevation angle ( ) , 

clearness of the sky ( )  and brightness of skylight ( )  were incorporated with ratio of PAR 

with H in the form: 
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( ) ( ) 




+++= 

2
sindIncInba

H

p
PAR

      (168) 

( ) ( ) 




+++= 

2
cosdIncInba

H

p
PAR

      (169) 

Alados et al. [5] fitted the following HB model for University of Almeria site as: 

( ) ( ) 




+−−= 

2
sin076.019.0194.0854.1 InIn

H

p
PAR

     (170) 

Alados and Alados-Arboledas [117] calibrated the following HB model for 

University of Almeria site as: 

( ) ( ) 




+−−= 

2
cos076.0195.0194.0854.1 InIn

H

p
PAR

    (171) 

 

4.10.11 Group 11 

In this group, clearness index (H/Ho), dew point temperature (Td), solar zenith angle 

( )z
 or solar elevation angle ( )  were incorporated with ratio of PAR with H in the form: 

( ) ( )sind
d

Tc

oH

H
Inba

H

p
PAR

+++= 







      (172) 

( ) ( )cosd
d

Tc

oH

H
Inba

H

p
PAR

+++= 







      (173) 

Alados et al. [5] developed the following HB model for University of Almeria site 

as: 

( ) ( )sin049.0005.0190.0791.1 ++−= 







d

T

oH

H
In

H

p
PAR

    (174) 

Alados and Alados-Arboledas [117] calibrated the following HB model for 

University of Almeria site as: 

( ) ( )cos049.0005.0190.0791.1 ++−= 







d

T

oH

H
In

H

p
PAR

    (175) 

Yu et al. [72] fitted the following HB models for contiguous United States as: 

( ) ( ) 4680.0cos049.00001159.0005396.0

2

0138.0 +−+−= 















zd

T

oH

H
In

oH

H
In

H

e
PAR

  (176) 

( ) ( )cos06031.00001166.00385.045.0 −−−= 







d

T

oH

H
In

H

p
PAR

    (177) 

4.10.12 Group 12 

In this group, clearness index, solar elevation angle ( )  or solar zenith angle ( )z
 

were incorporated with PAR to H ratio in the form: 

( )sinc

oH

H
Inba

H

p
PAR

++= 







       (178) 
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( )z

o

p

c
H

H
Inba

H

PAR
cos+








+=        (179) 

Alados et al. [5] fitted the following HB model for University of Almeria site as: 

( )sin099.0191.0832.1 +−= 








oH

H
In

H

p
PAR

      (180) 

Alados and Alados-Arboledas [117] calibrated the following HB model for 

University of Almeria site as: 

( )z

o

p

H

H
In

H

PAR
cos099.0191.0832.1 +








−=      (181) 

Wang et al. [71] reported the following HB model for Wuhan, Central China as: 

( )sin045.0061.0336.0 +







−=

o

e

H

H
In

H

PAR
     (182) 

Yu et al. [72] developed the following HB models for Contiguous United States as: 

( )z

o

e

H

H
In

H

PAR
cos06099.003853.04511178.0 −








−=     (183a) 

( )z

oo

e

H

H
In

H

H
In

H

PAR
cos0631.0006911.001344.04641.0

2

−







−








+=   (183b) 

 

4.10.13 Group 13 

In this group, clearness index and dew point temperature were incorporated to PAR 

to H ratio, PAR to Ho ratio, and PAR fraction in the forms: 

















++=

oH

H
c

d
T

ba

oH

e
PAR

100
        (184) 

















++=

oH

H
c

d
T

ba

oPAR

e
PAR

100
        (185) 

( ) d
d

Tc

oH

H
Inb

oH

H
Ina

H

e
PAR

+++= 















2

      (186) 

 

Yu et al. [72] developed the following HB model for Contiguous United States as: 

( ) 4283.00005011.001632.0

2

01102.0 ++−= 















d

T

oH

H
In

oH

H
In

H

e
PAR

   (187) 

Etuk et al. [68] fitted the following MB models for Calabar, Nigeria as: 

















++=

oH

Hd
T

oH

e
PAR

009.0
100

001.0001.0       (188a) 
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















++=

oH

Hd
T

oPAR

e
PAR

120.1
100

003.0002.0       (188b) 

 

4.10.14 Group 14 

 In this group, diffuse fraction (Hd/H), brightness of the skylight ( ) , or solar zenith 

angle 
z

 or dew point temperature (Td) were incorporated with PAR and H ratio in the 

forms: 
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Yu et al. [72] obtained the following HB models for Contiguous United State as: 
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4.10.15 Group 15 

In this group, clearness index and sunshine fraction were incorporated with PAR 

fraction or PAR to Ho in the forms: 
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Etuk et al. [68] recorded the following MB models for Calabar, Nigeria as: 
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4.10.16 Group 16 

In this group, relative humidity (RH) or sunshine fraction, clearness index was 

incorporated to PAR fraction in the forms: 
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Etuk et al. [68] reported the following MB models for Calabar, Nigeria as: 
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4.10.17 Group 17 

In this group, dew point temperature, sunshine fraction, clearness index and ratio 

of minimum and maximum temperature were incorporated to PAR fraction and PAR to Ho 

ratio in the forms: 
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Etuk et al. [68] proposed the following MB models for Calabar, Nigeria as: 
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5. Discussion 
 

As a result of the various empirical computing models reported by peers and 

researchers for estimating photosynthetically active radiation (PAR) applying astronomical 

parameters, meteorological parameters, geographical parameters, geometrical factors and 

atmospheric parameters resulting in a rigorous task for introducing a set input parameter 

with a particular functional form for optimal estimation PAR across the globe because of 

the nature of PAR and PAR/H dependence on latitude and altitude of the site and movement 

of the earth culminating in variations of local climate. 

For this purpose, the author has classified numerous PAR and PAR/H computing 

models into ten (10) categories based on their dependence on atmospheric parameters, 

meteorological parameters, geometrical factors, geographical parameters, astronomical 

factors etc. via: global solar radiation-based models, relative humidity-based models, 

temperature-based models, optical air mass-based models, clouds, cloud amount-based 

models, water vapour pressure-based models, turbidity-based models, sunshine-based 

models, cleanness index-based models and hybrid parameter-based models as mentioned 

earlier. 

The influence of water vapour pressure on PAR/H has been roughly reported in 

literature in season variations such as the higher in summer (wet season) and lower in 

winter (dry season) [51, 59, 107]. This report is in agreement with recent report of 

dependence of PAR/H on water vapour pressure by Akitsu et al. [49] who observed that 

the monthly mean PAR/H recorded higher values (0.465) in summer and lower value 

(0.420) in winter as shown in Fig. 3. In another study, Li et al. [55] observed that PARe/H 

increases with the increase in water vapour pressure and low-level cloud amount. 

According to the authors, this could be attributed to the absorptions of water vapour’s 

waveband selective in the solar spectrum. That is, in cloudy and humid conditions, the 

absorption of solar radiation in the near infrared (NIR) portion of the solar spectrum is 

enhanced, whereas absorption in the PAR waveband does not vary significantly. 
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Fig. 3. Comparison between PE/RS and climatic factors ((a) water vapor pressure e, (b) solar zenith angle _, (c) clearness index kt). Small dots denote 

observed data, while symbol marks denote mean value of simulation output (Rstar). Error bars denote the std. (For interpretation of the references to color 

in this figure text, the reader is referred to the web version of this article.) Akitsu et al. [55] 

 

Moreover, Bat-Oyun et al. [59] equally observed that increases in PARe/H were 

found under cloudy and humid conditions. The authors equally recorded a significant 

correlation between PARe/H and water vapour pressure (r = 0.49, P < 0.001) for day time 

(08:00 – 17:00, local time). However, the correlation was stronger during April – 

September (r = 0.70, P < 0.001) compared to the rest of the study period, i.e. October – 

March (r = 0.26, P < 0.001). McCree [37] recorded that during cloudy skies the energy in 

the PAR region formed a greater part of global solar radiation than on clear days. Another 

researcher, Hu et al. [118] observe similar seasonal variations in PAR/H for Beijing where 

lower PAR/H was observed during the dry season and higher PAR/H recorded in the wet 

season. 

Since water vapour pressure, relative humidity and cloud amount are similar in 

atmospheric behaviour, it can be inferred that increases in PAR/H or PAR culminate in a 

corresponding increase in water vapour pressure [37, 49, 51, 55, 59, 64, 107, 118], low 

level cloud amount [55] and relative humidity [60]. 

Considering clearness index, optical air mass, Angstrom turbidity coefficient and 

relative sunshine, these four factors (classes) increases with decreasing PAR/H. Li et al. 

[55] observed that the correlations between PARe/H and relative sunshine and clearness 

index are relatively good to some degree with the coefficient of correlation (R) value of 

0.65 and 0.69 respectively. According to the authors, compared with relative sunshine and 

clearness index, the correlation coefficient between PAR/H and Angstrom turbidity 

coefficient is relatively poor (0.38). They equally stated that the reason for poor relation 
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between PAR/H and Angstrom turbidity coefficient (β) is that the (β) values are determined 

under the clear sky conditions; they influence PAR significantly with clear sky conditions, 

whereas the PAR/H values are under the real sky conditions. 

Wang et al. [63] observed the dependence of hourly PAR on optical air mass 

defined by Kasten and Young [119] as a measure of length of the path through the 

atmosphere to earth surface, under several sky conditions in inner Mongolia, China that 

PAR generally decreased with increasing optical air mass and the maxima were achieved 

when sky conditions were cloudless as shown in Fig. 4. The same trend was observed by 

other researchers [9, 62, 64]. 

 

 
Figure 4. Dependence of hourly PAR on optical air mass under different sky conditions in Inner Mongolia (NMG) Wang et al. [63]. 

 

In as much as clearness index, optical air mass, Angstrom turbidity coefficient and 

relative sunshine possessed similar characteristics of atmospheric trend, it can be stated 

that increases in PAR/H or PAR brings about a corresponding decrease in clearness index 

[48, 55, 59, 68, 72]; Angstrom turbidity coefficient [55]; relative sunshine [55, 61, 74]; 

optical air mass [62-63, 80]. 

Generally, it is impossible to introduce a set of input parameter with a singular 

functional form for optimal estimation of photosynthetically active radiation. In fact, the 

tendency of enhancing the accuracy of estimation by combing some sets of input 

parameters is solely dependent on local climate and regional geography etc. To restate this, 

a brief review of the qualitative effort of solar energy researchers to enhance the accuracy 

of estimation of photosynthetically active radiation computing models by employing 

varieties of influencing factors are as represented in the following. 

Wang et al. [63] calibrated hybrid empirical consist of the attenuation factor in clear 

skies (AFc, ratio of measured to extraterrestrial PAR under clear skies); attenuation factor 

with clouds, which can be expressed as H/Ho with PAR coefficient (PAR/PARo) under 

hourly time scale (model 1) parameters. The authors equally fitted another hybrid model 

comprises clearness index (H/Ho) – attenuation factor with clouds and cosine of solar zenith 

angle (θz) under hourly and daily time scales (model 2). From the statistical indices, model 
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2 was chosen for reconstructing hourly and daily time scales PAR records in Inner 

Mongolia, China. This indicates that cosine of zenith angle (θz) and clearness index is more 

suitable compared to attenuation factor in clear skies, extraterrestrial PAR and clearness 

index in Inner Mongolia under clear skies in China as shown in Fig. 5 and 6. 

 

 
Figure 5. Scatterplot of hourly measured PAR and estimates in Inner Mongolia (NMG) using model 2 (grey line means 1 : 1 

relationship) Wang et al. [63]. 
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Figure 6. Scatterplot of daily measured PAR and estimates in Inner Mongolia (NMG) using model 2 (grey line means 1 : 1 
relationship) Wang et al. [63]. 
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Yu and Guo [76] calibrated Alados et al. [5] computing models to generate the 

relationship between PAR fraction and model parameters for Bondville station (BON) and 

Sioux Falls Station (SXF) in Midwestern United States using data from 2009 – 2011. The 

authors employed diffuse fraction (Hd/H), the sky brightness (Δ), the dew point 

temperature and cosine of sun zenith angle (cosθz) as model 1 input parameters; diffuse 

fraction, the sky brightness and the cosine of sun zenith angle as model 2 input parameters; 

clearness index, dew point temperature and the cosine of sun zenith angle as model 4 input 

parameters under several sky conditions. From the statistical indices, it was discovered that 

model 1 was more suitable for estimating PAR in Midwestern United States followed by 

model 3 next by model 2 and model 4 recorded the least performance under Overcast Sky 

(OS). Under partially cloudy sky (PS), model 3 was most suitable, followed by model 2, 

next by model 3 and model 4 was the least suitable empirical model for estimation of PAR 

in Midwestern United States. Whereas, under Clear Sky (CS) model 3 recorded the most 

suitable, followed by model 4, next by model 3 and lastly by model 4 for PAR estimation 

in Midwestern United States. Under all sky conditions, model 2 recorded the best, followed 

by model 3, next by model 1 and model 4 reported the least computing model for PAR 

estimation in Midwestern United States as shown in Table 2. 

Yu et al. [72] synthesized ten (10) empirical computing models from previous 

studies to compare with their measure PAR in the contiguous United States. Model 1 – 4 

were purposed by Alados et al. [5]. Model 5 – 6 were suggested by Zhang et al. [97]. Model 

7 – 10 were obtained from previous studies [55, 109, 120-121]. From the statistical indices, 

the ten synthetized computing models for estimating PAR from H show that the quadratic 

function model taking (lnH/Ho) as main parameter plus cos θz has the best performance. 

According to the authors, the results equally show that clearness index (H/Ho) is capable 

to be the indicator for estimating PAR from H as one substitute of the combination of 

diffuse fraction (Hd/H) and the skylight brightness (Δ). They also observed that the role of 

dew point temperature in the models is not significant to improve the overall performance. 

Yu and Wang [62] employed only ratio of PAR/H as input parameter for model 1; 

global solar radiation (H) and clearness index as input parameter for model 2; and clearness 

index and optical air as input parameter for model 3 for estimation of PAR in Sanjiang site, 

Northeast China for hourly time scale under all sky conditions. The statistical indicators 

revealed that model 3 is the most suitable computing model for PAR estimation in Sanjiang 

site as shown in Table 1.  

 
Table 1: Comparison results of empirical estimation model for hourly PAR at Sanjiang site Yu and Wang 

[62]. 

Models Slope 

(a) 

Intercept 

(b) 

Coefficient of 

Determination 

(R2) 

MBE 

(µmolm-2s-1) 

RMSE 

(µmolm-2s-1) 

RE 

(%) 

A 1.03 5.6 0.98 35 75.5 10.7 

B 1.01 4.2 0.97 15.3 76.7 11.4 

C 1.01 1.5 0.97 19.5 67.8 9.4 

 

Wang et al. [71] employed sky clearness (ɛ), sky brightness (Δ), precipitate water 

(w), and sin of solar elevation angle (h) as an input parameter for model 1; clearness index, 

sin of solar elevation angle (h) and perceptible water (wv) as input parameter for model 2; 
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only clearness index as input parameter for model 3; sky clearness (kt), sky brightness (Δ), 

and sin of solar elevation angle for input parameter for model 4; and clearness index and 

sin of solar elevation angle as input parameter for Sanya station (SY), Lasa Station (LS), 

Yingtan station (YT), Fergqiv station (FQ), Changshu Station (CS), and other stations in 

central China for estimating PAR under hourly time scale. According to the authors, as 

shown in Fig. 7. the slopes of all the models were higher than expected and the estimated 

values were slightly smaller than the observed results. This reveals that there are some 

influencing factors on PAR/H not being taken into consideration, for example, the 

influence of ozone absorption and surface albedo. The authors equally stated that model 2 

and 3 may be better for calculating PAR from measurement in Wuhan. In order to check 

the level of reliability of the models (2 and 3), the author tested the two models (model 2 

and 3) at seven (7) stations in Central China. The authors revealed that the two models 

work well in most stations in that the relative error in DH station was about 5.9%, which 

produced a better result than that in other stations in China. For instance, Hu et al. [118] 

reported relative error between measured and estimated PAR as about 20% in Beijing. On 

the whole, the statistical results revealed that PAR could be estimated with a high level of 

precision using global solar radiation and a variable that accounts for the sky condition 

dependence of PAR/H in Central China. However, a larger derivation was still found at 

Huitong Station (HS), Taoyuan station (TY), and Qianyanzhou station (QYS), with relative 

error higher than 10%. This according to the authors may be attributed to the higher 

absorption effects for extraterrestrial solar radiation in the above three sites (clouds and 

water vapour), which lie south of Wuhau and close to the tropical regions. 

Li et al. [55] employed water vapour pressure-based model, cloud amount-based 

models, relative sunshine-based models, clearness index-based models and hybrid model 

consisting of relative sunshine and water vapour pressure input parameters to estimate PAR 

in Northern Tibetan Plateau (NTP). From the statistical indices, the hybrid model 

performed better than other four models mentioned above. To check the applicability of 

the model, the authors tested the models in five stations outside the location the models 

were fitted (Wudaoliang, WDL) since PAR is local climate and geographical site 

dependent. The result revealed that the model is practicable for Tibetan Plateau, and 

Southeast of China. They further stated that the model is considered acceptable for 

Northwest of China; but for the East of China, the model is not applicable. 
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Fig. 7. Linear regression between hourly observed and modeled PAR in Wuhan (red line 1:1 relationship) 

Wang et al. [71]. 

 

Aguiar et al. [65] developed three empirical models for estimating PAR in South 

West Amazonia both hourly and daily time scale. The authors employed global solar 

radiation as the only input parameter to develop model 1. Model 2 was fitted by applying 

global solar radiation and clearness index as input parameter while global solar radiation, 

cleanness index and water vapour pressure was employed as input parameter for simulating 

model 3. From the statistical indices on both hourly and daily time scale, the authors 

reported that the least accurate estimates were usually obtained by model 3 for seasonal 

models as well as annual models, which employed solar radiation, clearness index and 

water vapour as input parameters. The exception to this general trend was during the 

transition between the dry and the wet seasons on the pasture site, whereas model 1 (hourly 

time scale) and 2 (daily time scale) reported the worst performance respectively. The 

authors stressed that the relative inferior performance of model 3 is probably due to lack 

of a clear relationship between the ratio of PAR/H and water vapour pressure. However, 

the researchers stated that the models showed no significant differences among themselves. 

That is, significantly, no single model was superior throughout the year, with the best fit 
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alternating between model 1 (global solar radiation as input parameter) and model 2 (global 

solar radiation and cleanness index as input parameters). The authors concluded that the 

results suggest that simple models of PAR based on one or two parameters are robust and 

may provide a strong basis for regionally or ecosystem-based Ecophysiological models in 

this ecologically important part of Brazil. This finding is similar to report found in 

literature. Yu and Guo [76] in an attempt to identify the most relevant input parameter for 

estimating PAR in Midwestern United States excluded relative humidity, dew point 

temperature and perceptible water related to water vapour pressure indicating that water 

vapour pressure is not a key factor for hourly PAR estimation compared with other 

parameters. Lopez et al. [122] suggested that input parameters related to water vapour are 

less important than other sky condition parameters for PAR estimation.  

Also, Wang et al. [63] discovered that employing global solar variation, clearness 

index and cosine of solar zenith angle are sufficient for PAR estimation. However, 

Jacovides et al. (2015) recommended that only the combination of sunshine fraction and 

global solar radiation can estimate the daily PAR with reasonable accuracy.  

In general, out of the ten (10) different classes of empirical models for estimation 

PAR across the globe identified in this paper, seven hundred and fifty-seven (757) 

theoretical models were reported with 62 functional forms and 32 groups (sub-class). Five 

hundred and seventy (570) models with the corresponding 4 functional forms and 3 groups 

were recorded from global solar radiation-based models representing 75.29 %; 18 models 

with the corresponding 1 functional form and 1 group resulting to 2.37 % were applied for 

relative humidity-based models; 1 model with 1 functional form and 1 group amounting to 

0.13 % for temperature-based model; 1 model with 1 functional form and 1 group yielding 

to 0.13 % for cloud amount-based model; 1 model with 1 functional form and 1 group 

yielding to 0.13 % for water vapour pressure-based model; 1 model with 1 functional form 

and 1 group yielding to 0.13 % for turbidity-based model; 4 models with 2 functional forms 

and 1 group yielding to 0.52 % for optical air mass-based models; 10 models with 6 

functional forms and 3 groups yielding to 1.32 % for sunshine-based models; 27 models 

with 9 functional forms and 3 group yielding to 3.56 % for clearness index-based models; 

and 91 models with 36 functional functions and 17 groups resulting to 12.02 % for hybrid 

parameter-based models as presented in Fig 8. 
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Fig. 8: Classification of photosynthetically active radiation (PAR) and corresponding values of models, functional 

forms and groups  
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It is clear that from above literature that introducing an appropriate set of input that 

is hybrid model for photosynthetically active radiation estimation in any site of interest is 

not a viable work. This could be attributed to its complexity involved because of using 

numerous numbers of required input parameters, inaccuracies associated with irrelevant 

parameters, difficulty in explaining the model and time consuming task for selecting the 

required parameter and its inability to accept many input parameters. 

The artificial neutral network (ANN) and other soft computer techniques often 

applied for estimating other component of solar radiation such as diffuse solar radiation, 

direct normal irradiance and global solar radiation etc. can be adopted for estimating PAR 

or PAR/H. Several applications of artificial neural networks are reported in numerous fields 

such image impression, defense, mathematics, character recognition, aerospace, neurology, 

meteorology and engineering [1-2]. These techniques have been employed for prediction 

and empirical analysis in market trend forecasting, solar and weather. 

For instance, Yu and Guo [76] applied artificial neural networks (multiple layers’ 

perception, MLP) and conventional Multiple Linear Regression (MLP) models for 

estimating PAR on hourly time scale under different sky conditions in Midwestern United 

States. The result from the statistical indices revealed that ANN models show higher 

accuracy than the Multiple Linear Regression (MLR) models especially for overcast sky 

and clear sky as shown in Table 2. The authors also commented that using water vapour 

parameters (relative humidity, dew point temperature and precipitable water) do not 

improve the accuracy significantly. They equally concluded that ANN model that combine 

the sky clearness, the cosine of sun zenith angle and the hourly global solar radiation as 

inputs estimated PAR most accurately. This report is in line with findings in literature [63, 

75, 122]. 

Wang et al. [75] applied ANN models (multi-layer perception, MLP; Radial Basis 

Neural Network, RBNN; and Generalized Regression Neural Networks, GRNN) and all-

sky regression PAR model (ALSKY) to estimate hourly PAR under ecosystem such as 

farmland, forest, lake, desert, grassland, bay and wetland. Global solar radiation (H) was 

applied as the only input parameter; combination of H and air pressure (PA); combination 

of H and dew point temperature (Td); combination of H and relative humidity (RH); 

combination of H and Water Vapour Pressure (E*); combination of H and air temperature 

(T); combination of H, T and RH; finally, combination of H, T, RH, Td, E
* and PA as 

input parameters for PAR estimation. From the statistical indicators, MLP and RBNN 

models perform better than GRNN and ALSYK models and the combinations of air 

temperature and air pressure parameters recorded more effects on hourly PAR compared 

with relative humidity, dew point temperature and water vapour pressure parameters 

under agricultural farmland ecosystem stations. This report is in line with the findings in 

literature that water vapour parameters are less important than other sky condition 

parameters for PAR estimation [76, 122]. The author also pointed that under forest 

ecosystem stations, the GRNN model produces the lowest root mean square error and 

mean absolute error by combining global solar radiation and air pressure variables inputs 

at HLF station while MLP, BNN and ALSKY models perform better than the GRNN 

model. It is also indicated that relative humidity is not a key parameter influencing the 

hourly PAR parameter as reported by other researchers [76, 122]. Moreover, under the 
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Bay ecosystem, the ANN models generally provide better estimates than the ALSKY 

model, and MLP and GRNN models significantly overestimate low PAR values while 

the RBNN and the ALSKY model slightly overestimates and underestimates 

respectively. For the grassland stations, the researcher recorded that the MLP and 

AKSKY model yielded more accurate hourly PAR estimates compared with the GRNN 

and RBNN models at NMG ecosystem station, while GRNN model with global solar 

radiation input parameter provides the lowest statistical indices at HBG station whereas 

for the wetland ecosystem SJM ecosystem station, the GRNN model comprising global 

solar radiation input parameter produces slightly lower RMSE values. Under the desert 

ecosystem stations, the MLP model performs better than the GRNN, RBNN and ALSKY 

models at FKD station, and the dew temperature parameter generally has more effect on 

hourly PAR estimates compared with air temperature, relative humidity, air pressure and 

water vapour pressure. While under lake ecosystem stations, the GRNN model yielded 

better estimates than other models at DHI station and the water vapour pressure is the 

most important parameter influencing the hourly PAR fluctuations. The researcher finally 

concluded that the MLP and RBNN models are more accurate in estimating hourly PAR 

at different ecosystems in China compared with GRNN and ALSKY models, which will 

be of vital importance for terrestrial photosynthesis modeling and surface energy budget 

as shown in Fig. 9 – 15. 

 
Table 2: Statistical comparison between observed hourly PAR and modeled PAR from ANN and 

conventional regression models Yu and Guo [76] 
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Fig. 9. The PAR estimates of the optimal models for the FQA station in farm land ecosystem Wang et al. 

[75]. 
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Fig. 10. The PAR estimates of the optimal models for the SJM station in wetland ecosystem Wang et al. [75]. 
 

 
Fig. 11. The PAR estimates of the optimal models for the ALF Station in forest ecosystem Wang et al. [75]. 

 

 



 

Peer-Reviewed Article   Trends in Renewable Energy, 4 

 

 

 

 

Tr Ren Energy, 2018, Vol.4, No.2, 236-327. doi: 10.17737/tre.2018.4.2.0079 315 

 

 

 

 
Fig. 12. The PAR estimates of the optimal models for the SYB station in bay ecosystem Wang et al. [75]. 

 
Fig. 13. The PAR estimates of the optimal models for the HBG station in grassland ecosystem Wang et al. 

[75]. 
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Fig. 14. The PAR estimates of the optimal models for the SPD station in desert ecosystem Wang et al. [75]. 

 
Fig. 15. The PAR estimates of the optimal models for the THL station in lake ecosystem Wang et al. [75]. 
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6. Research Gaps 
 

The photosynthetically active radiation (PAR) empirical models examine in this paper 

is distinctive and provide valuable outcome for numerous circumstances. The models 

regarded as capable and convenient for hourly models, temperature-based models, optical 

air mass-based models, relative humidity-based models, cloud amount-based models, 

water vapour pressure-based models, turbidity-based models, sunshine-based models, 

clearness index-based models and hybrid parameter-based models. A number of essential 

areas identified in literature as well as shortcomings with solutions recommended in this 

paper are summed up subsequently below. 

1. In previous studies, authors employed one, two, three, or more years of 

photosynthetically active radiation data as available to build ANN models is not a 

viable work. Thus, employing training and testing data of minimum three years and 

one year respectively can be adopted to estimate photosynthetically active radiation 

accurately; however, further comparative analysis on the aspect can be under taken 

also. 

2. During the development of ANN models, the neurons in ANN hidden layer are 

changed one by one and mean absolute percentage error (MAPE) are calculated 

which is time consuming. Therefore, considerable techniques should be developed 

to find out hidden layer neurons at which estimation error is minimum. 

3. Different artificial neural networks models need to be stimulated employing 

latitude, longitude, altitude, extraterrestrial solar radiation, solar declination, cosine 

of solar zenith angle, optical air mass and other atmospheric and meteorological 

input parameters that can be calculated with standardized formulas and checked for 

accuracy. The goal is that, if an appropriate modelling of this radiometric flux 

(PAR) could be developed, a large data resource of it will be created without the 

substantial cost of the instrumentation network that would otherwise be needed 

thereby meeting the needed meteorological stations and countries (Africa) that 

cannot measure PAR routinely. 

4. Comparison of Niching genetic algorithm, automatic relevance determination 

methodology need to be employed in selecting most relevant input parameters in 

addition with ANN models for estimation 

5. Additional studies are needed for the estimation of beam and diffuse 

photosynthetically active radiation (PAR) using ANN and other soft computing 

models 

6. Drawing from findings in literature, a single model based on the variations of the 

ratio photosynthetically active radiation to global solar radiation under different sky 

conditions, ecosystem, local climate and geographical regions over several sites 

employing empirical models so as to developed weather-dependent functions of 

this ratio should been considered and emerged. The goal is to develop a model 

transferable to these locations that routinely measured the broadband solar radiation 

for appropriation calibration of the model using their measured meteorological data 

to generate and probably recommend a model transferable to other sites, ecosystem, 

local climate and geographical areas as in what was obtainable in Food and 
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Agriculture Organization (FAO) Penman-Monteith model recommended for 

estimating reference evapotranspiration developed by Allen et al. [123] without 

local calibration globally.  

7. It is also essential to mention that soft computing models has newly been initiated 

for estimating renewable energy resources (e.g. PAR), but additional work is 

necessary to increase solar radiation or PAR estimation accuracy pertaining to 

numerous seasons, climate change to supply increasingly reliable efficient solar 

systems on the market. 

 

 

7. Concluding Remarks  
 

This review paper presents a comprehensive review of literature on 

photosynthetically active radiation across the globe. 757 empirical models, 62 functional 

forms, and 32 groups were identified employing global solar radiation-based models, 

relative humidity-based models, temperature-based models, optical air mass-based models, 

cloud amount-based models, water vapour pressure-based models, turbidity-based models, 

sunshine-based models, clearness index-based models, and hybrid parameter-based 

models. The findings in this paper provide future dimension to industry and research 

practitioners for further studies on solar system and photosynthetically active radiation 

estimation in particular. 

From this review, ANN models are found to estimate PAR accurately in different 

climate conditions and ecosystem across the globe. This could be attributed to the fact that 

these models can accept many input parameters as compared with empirical models that 

strengthen its reliability. Moreover, it can also be concluded that ANN models estimations 

offer greater accuracy as compared with empirical models, e.g. Tables 2 and Fig. 9 – 15 

show estimation error in a range (less than 20%) and this could be very good in terms of 

PAR estimation. Therefore, ANN and other soft computing models are much more 

demanding in the domain of renewable energy (e.g PAR) estimation and solar system 

design. It is finally recommended that future studies on PAR estimation should consider 

employing both empirical and soft computing models in order to observe the research gap 

between the two techniques in sites where PAR estimation has not been carried out before 

particularly in Africa continent where few meteorological station are capable of measuring 

this radiometric flux.  
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